September 18, 2015Physics 131Prof. E. F. Redish

Theme Music: When Push Comes to Shove Greatful Dead

Cartoon: Rick deTorie One Big Happy

Copyright © 2002 Creators Syndicate, Inc.

Quiz 2

Avg. = 8.3

										70 -											-
	1a	1h	1c	1d	10	1f		2	3	60 -										_	_
	р	m	m	m	m	р		C	e	50 -								•	V	_	
р	85%	6%	18%	14%	4%	92%	а	12%	1%	40 -									-	_	_
m	15%	94%	<mark>81%</mark>	<mark>86</mark> %	95%	7%	b	6%	1%	30 -										_	_
							С	76%	8%	20 -							•			_	
							d	4%	9%	10 -											
							е	1%	73%	0			_	• 1							
							f	1%	6%	0 -	0	1	2	3	4	5	6	7	8	9 10	ר)

Physics 131

- Seeing from the motion
- Seeing consistency (graphs & equations)

Example:

Calculating with acceleration

In The Fellowship of the Ring, the hobbit Peregrine Took (Pippin for short) drops a rock into a well while the travelers are in the caves of Moria. This wakes a balrog (a bad thing) and causes all kinds of trouble. Pippin heard the rock hit the water 7.5 s after he dropped it. Assuming that the rock fell with a constant acceleration of 10 m/s^2 , how deep is the well?

Approaching a problem

- What's "the story" of the problem?
- What principles/equations do you know that might be relevant?
- What assumptions might we make to create a solvable first model?
- Give names to the relevant parameters and variables.
- Of the variables and parameters that appear in your equation, which do you know?
- How many unknowns do you have?
- How many equations do you have?

One more icon: Shopping for Ideas

What we need to do here is consider some different possibilities and evaluate them to see how well they work for us.

What Causes Motion? Drawing experience

- What do the following motions feel like?
 - No motion (at rest).
 - Constant velocity.
 - Constant acceleration.
 - Changing acceleration (jerk)

What's wrong with this?

FUNKY WINKERBEAN A LOT OF THE OTHER SCHOOL BUS DRIVERS COMPLAIN ABOUT KIDS FRAHTING AND ROOLING AROUND ON THE BUS! COMPLAIN ABOUT COLORS AROUND ON THE BUS!

What causes motion?

Do you need an outside influence to <u>cause</u> motion or to <u>maintain</u> it?

Reading questions

- Do theories underlie and structure every model physicists create/produce?
- Is the reason why Newton's theory is still a theory because the rules may not apply to small and large scale phenomena?
- How do we know when our scientific understanding is too immature to resolve a certain problem and when can scientists fundamentally revise a concept?
- Why do different rules about motion apply depending on the scale you are looking at? Shouldn't rules of motion be universal? It seems like Newton's laws universally explain motion, to a certain point.
- What was Aristotle's theory and why was it wrong?
 9/18/15
 Physics 131

Reading questions:

- Can we discuss in greater detail how acceleration turned out to be the champion concept that made Newton's theory possible, as I still struggle with visualizing it?
- Why is acceleration such a key part of Newton's Laws?
- I know that one of Newton's Laws was that an object in motion stays in motion until a force makes it stop, but why is it that if you roll a ball on a flat surface eventually it will stop?
- A lot of the rules we learn in chemistry are this is always true except these few cases... Do Newton's laws have any exceptions?
- How are Newton Laws flawed when it comes to small objects or really big ones?