Physics 131 10/22/13

Prof. E. F. Redish

Physics 131 10/22/13

Foothold ideas:

Momentum

■ We define the momentum of an object, A:

$$\vec{p}_A = m_A \vec{v}_A$$

- This is a way of defining "the amount of motion" an object has.
- Our "delta" form of N2 becomes

which we can rewrite as

$$\vec{F}_A^{net} = m_A \frac{\Delta \vec{v}_A}{\Delta t} = m_A \vec{a}_A$$

$$\vec{F}_A^{net} = \frac{\Delta (m_A \vec{v}_A)}{\Delta t} = \frac{\Delta \vec{p}_A}{\Delta t}$$

10/22/13 Physics 131

Foothold idea:

The Impulse-Momentum Theorem

$$\vec{a}_A = \vec{F}_A^{net} / m_A$$

■ Put in definition of a

$$\frac{d\vec{v}_A}{dt} = \frac{\vec{F}_A^{net}}{m_A}$$

■ Multiply up by Δt

$$m_{\scriptscriptstyle A} \Delta \vec{v}_{\scriptscriptstyle A} = \vec{F}_{\scriptscriptstyle A}^{\scriptscriptstyle net} \Delta t$$

■ Define Impulse

$$\vec{\mathcal{J}_A}^{net} = \vec{F}_A^{net} \Delta t$$

■ Combine to get Impulse-Momentum Theorem for any

$$\Delta \vec{p}_A = \vec{\mathcal{J}}_A^{net}$$

10/22/13

object A

Physics 131

0

2

Physics 131 10/22/13

Foothold idea: Momentum Conservation: 1

■ If two objects, A and B, interact with each other and with other ("external") objects,

$$m_{\scriptscriptstyle A}\,\Delta\vec{v}_{\scriptscriptstyle A}=(\vec{F}_{\scriptscriptstyle A}^{\,ext}+\vec{F}_{\scriptscriptstyle B\to A})\Delta t$$

$$m_B \Delta \vec{v}_B = (\vec{F}_B^{ext} + \vec{F}_{A \to B}) \Delta t$$

■ Adding:

$$m_{A} \ \Delta \vec{v}_{A} + m_{B} \ \Delta \vec{v}_{B} = \left[\vec{F}_{A}^{ext} + \vec{F}_{B}^{ext} + \left(\vec{F}_{A \to B} + \vec{F}_{B \to A} \right) \right] \Delta t$$

$$\Delta \left(m_{A} \vec{v}_{A} + m_{B} \vec{v}_{B} \right) = \vec{F}_{AB}^{ext} \Delta t$$

10/22/13

Physics 131

Foothold idea: Momentum Conservation: 2

$$\Delta (m_A \vec{v}_A + m_B \vec{v}_B) = 0$$

$$m_A \vec{v}_A^i + m_B \vec{v}_B^i = m_A \vec{v}_A^f + m_B \vec{v}_B^f$$

Prof. E. F. Redish