Physics 131- Fundamentals of Physics for Biologists I

Office Hours:

- 12/9 Monday 3-4pm AV Williams 3341
- 12/10 Tuesday 1-2pm AV Williams 3341
- 12/12 Thursday 2pm-3.30pm Course Center

Energy in a Pair of Atoms

bistance between atoms

- Let's define the zero of potential energy as the minimum of the Potential Energy Curve.
- With this definition, energy is ON AVERAGE the same for both potential and kinetic energy

Interaction between two pairs of atoms

 After many random collisions, energy is ON AVERAGE the same for

- Kinetic energy of motion of both pairs of atoms
- Kinetic energy of vibration of atom pair
- Potential energy of interaction (relative to potential minimum)

Temperature

- Temperature: Measures the amount of energy in each atom or interaction – the key concept is that thermal energy is on average equally distributed among all these possible "bins" where energy could reside.
- Note: Potential energy of each bin is here defined relative to each minimum of the Potential Energy Curve.

- energy in the whole object. Depends on temperature and the number of "bins" where energy could reside.
- Energy in each bin: ½ kT

If we have <u>unequal</u> amounts of the <u>same</u> kinds of materials at different temperatures and put them together, what happens?

- 2. pretty close to 80 C
- 3. pretty close to 20 C
- 4. greater than 60 C
- 5. something else

Experiment 3

If we have <u>equal</u> masses of <u>different kinds</u> of materials at different temperatures and put them together, what happens?

- 1. pretty close to 50 C
- 2. pretty close to 80 C
- 3. pretty close to 20 C
- 4. greater than 80 C
- 5. less than 20 C

Why does copper block heat the water less than water itself?

Whiteboard,

TA & LA

Specific Heat and Heat Capacity

The amount of thermal energy Q needed to produce one degree of temperature change is an object is called its <u>heat capacity C</u>.

$$Q = CDT$$

The amount of thermal energy per unit mass needed to produce one degree of temperature change in an object is called its <u>specific heat</u>.

$$C = mc$$

Scales and Units

- I cal = the amount of thermal energy needed to change the temperature of 1gram of water by 1 degree C (from 14.5° to 15.5°) (by definition)
- 1 Cal = 1000 cal
- 1 Cal = 4184 J

Can we feel the temperature?

– If we have a cup of hot water and a cup of cold water, can we feel the difference?

If you touch the plastic part of your chair and the metal part, which feels warmer?

Whiteboard, TA & LA