# Physics 131- Fundamentals of Physics for Biologists I 

## Office Hours:

12/6 Friday 5pm-6pm AV Williams 3341
12/9 Monday 3-4pm AV Williams 3341
12/10 Tuesday 1-2pm AV Williams 3341
12/12 Thursday 2pm-3.30pm Course Center

How many interactions in the system hold potential energy?


6 interactions hold potential energies 4 kinetic energies

Whiteboard, TA \& LA

## Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \quad \text { No vectors! }
$$

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
$$

$$
\begin{aligned}
& \text { Just add up } \\
& \text { all pairs! }
\end{aligned}
$$

$$
U_{\text {tot }}^{\text {elec }}=\frac{k_{C} q_{1} q_{2}}{r_{12}}-\frac{k_{C} q_{1} Q_{3}}{r_{13}}-\frac{k_{C} q_{1} Q_{4}}{r_{14}}-\frac{k_{C} q_{2} Q_{3}}{r_{23}}-\frac{k_{C} q_{2} Q_{4}}{r_{24}}+\frac{k_{C} Q_{3} Q_{4}}{r_{34}}
$$

How many of the energies change when ONLY the charge $Q_{4}$ moves far to the right, nothing else moves?


Whiteboard,
TA \& LA


$$
U_{\text {tot }}^{\text {elect }}=\frac{k_{c} q_{1} q_{2}}{r_{12}}-\frac{k_{c} q_{1} Q_{3}}{r_{13}} \frac{1}{i} \frac{k_{c} q_{1} Q_{4}}{r_{14}} \frac{1}{1} \frac{k_{c} q_{2} Q_{3}}{r_{23}}+\frac{k_{c} q_{2} Q_{4}}{r_{24}}+\frac{k_{c} Q_{3} Q_{4}}{r_{34}} \vdots
$$

## Balance of kinetic and potential energy in a molecule



## Energy Bargraphs!

# Now all four charges are allowed to move 

6 potential energies 4 kinetic energies

When the charges move, energy is exchanged between ALL 10 "bins"

Total energy is conserved!


## Hidden Energy Inside Objects

Object A


- Each atom can have kinetic energy
- Each interaction between atoms can store potential energy
- Interactions between atoms can be modeled as springs
- More realistic: Lenard-Jones Potential


## Temperature

Object A


- Temperature: Measures the amount of energy in each atom or interaction - the key concept is that thermal energy is on average equally distributed among all these possible "bins" where energy could reside.


## If you lower the temperature of object

 A, what happens to the energy?bject A



1. Fewer "bins", but each carries same energy independent of temperature
2. Smaller amount of energy in each bin
3. Both fewer "bins" and smaller amount of energy in each bin

Whiteboard, TA \& LA

Object A at 80 C temperature, touches object $B$ at 20 C temperature. The system will exchange énergy. What will happen


The temperature of the system-will be:

1. pretty close to 50 C
2. pretty close to 80 C
3. pretty close to 20 C
4. greater than 80 C
5. less than 20 C

Whiteboard, TA \& LA

## Critical Experiment 1

## If we have equal amounts of the same kinds of materials at different temperatures and put them together, what happens?



