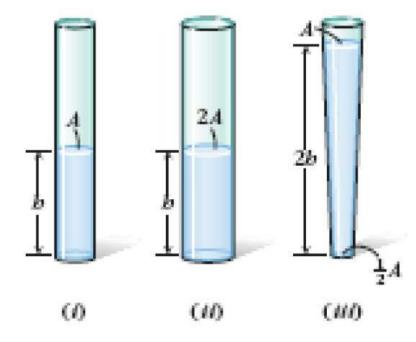
Physics 131-Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

Research Experience

Next semester we plan to offer the opportunity for some Physics 131 students to participate in collaborative projects with biomedical researchers on campus and at the NIH. This would be a for-credit hands-on research activity, two afternoons a week.

We may include a one week course during winter break


Consider the containers at right. Which of the following correctly compares the *Force* (*F*) of the water at the bottoms of the containers?

1.
$$F_1 = F_2 = F_3$$

3.
$$F_3 > F_1 = F_2$$

4.
$$F_2 > F_1 > F_3$$

- 5. $F_1 = F_3 < F_2$
- 6. Other ranking
- 7. Not Sure

Buoyancy

Example: Wood sphere in water

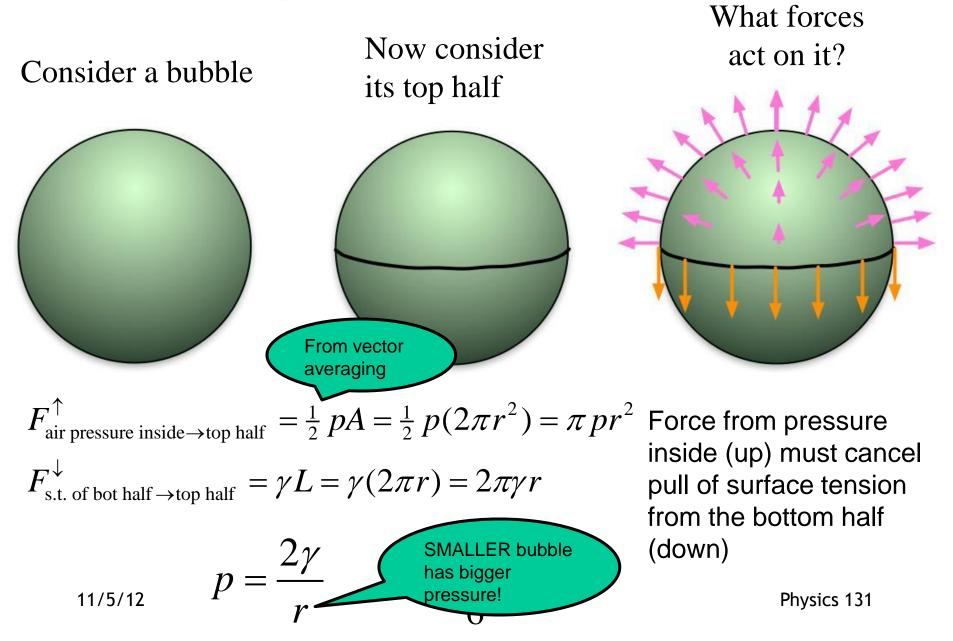
Weight of the wood:

$$\mathbf{F}_{g} = - \rho_{Wood} V \mathbf{g}$$

The fluid "provides" as much buoyant force as the weight of fluid pushed out of the way $\mathbf{F}_{\mathbf{B}} = \rho_{\text{fluid}} V \mathbf{g}$

Net force on wood:

$$\mathbf{F}_{net} = \rho_{fluid} \mathbf{V} \mathbf{g} - \rho_{Wood} \mathbf{V} \mathbf{g} = (\rho_{fluid} - \rho_{Wood}) \mathbf{V} \mathbf{g}$$



Foothold ideas: Surface tension

- Due to the intermolecular interactions holding a liquid together, the surface of a liquid experiences a tension.
- The pull across any line in the surface of the liquid is proportional to the length of the line.


$$F_{\text{surface tension}} = \gamma L$$

Laplace Bubble Law

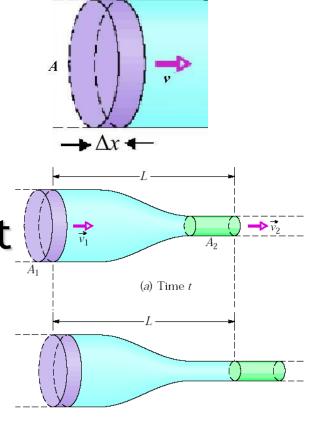
Two balloons are connected by a pipe with a valve. When the valve is opened, what will happen?

- 1. The big balloon will get smaller and the small get larger until the two are equal.
- 2. The big balloon will get larger and the small get smaller until the small one is very small.
- 3. Something else will happen.

http://www.physics.umd.edu/deptinfo/facilities/lectedemos/demosf3/f3-02.htm

Fluid Flow Basics Matter Current (incompressible)

Q = Current = (volume crossing a surface)/s [Q] = L³/T


$$\vec{Q} = \frac{\left(A\Delta\vec{x}\right)}{\Delta t} = \frac{\left(A\vec{v}\Delta t\right)}{\Delta t} = A\vec{v}$$

Conservation of matter:
 "What goes in must come out

$$\Delta V_{in} = \Delta V_{out}$$

$$A_1 (v_1 \Delta t) = A_2 (v_2 \Delta t)$$

$$Q = Av = \text{ constant}$$
8

(b) Time $t + \Delta t$

11/5/12

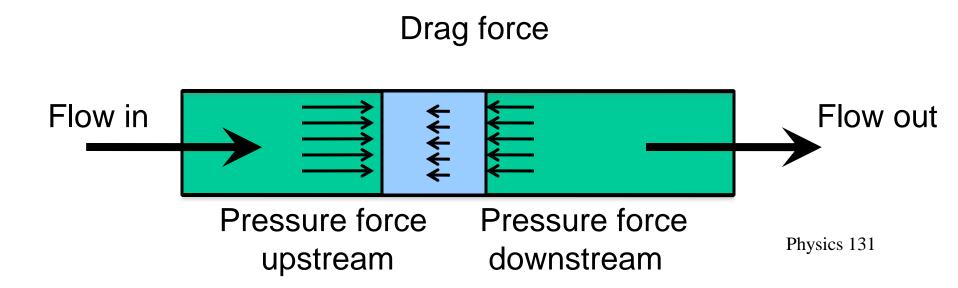
Blood flows through a coronary artery that is partially blocked by deposits along the artery wall. Through which part of the artery is the <u>flux (volume of blood</u> per unit time) largest?

- 1. The narrow part
- 2. The wide part
- 3. Same in both

Blood flows through a coronary artery that is partially blocked by deposits along the artery wall. Through which part of the artery is the <u>speed of the</u> <u>blood</u> the largest?

- 1. The narrow part
- 2. The wide part
- 3. Same in both

Sketch the forces


Where is the pressure highest?

- 1. Left
- 2. Right
- 3. The same
- 4. Depends on whether you are pushing or pulling

Whiteboard, TA & LA

Fluid Flow Basics Pressure drop

- If we have a fluid moving at a constant rate and there is drag, N2 tells us there must be another force to balance the drag.
- The internal pressure in the fluid must drop in the direction of the flow to balance drag.

