Physics 131-Physics for Biologists I

Professor: Wolfgang Losert
wlosert@umd.edu

Midterm 2: November 8

Office Hours before Midterm 2:
Course Center: Monday Nov 4, 11am-12.30pm 3341 AV Williams: Wednesday Nov 6, 11.30am-1pm

Random walk in 2D

$>$ As a result of random motion, an initially localized distribution will spread out, getting wider and wider. This phenomenon is called diffusion
$>$ The square of the average distance traveled during random motion will grow with time.
>1 Dimension $\left\langle(\Delta x)^{2}\right\rangle=2 D \Delta t$
>2 Dimensions $\left\langle(\Delta r)^{2}\right\rangle=\left\langle(\Delta x)^{2}+(\Delta y)^{2}\right\rangle=4 D \Delta t$
>3 Dimensions $\left\langle(\Delta r)^{2}\right\rangle=\left\langle(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right\rangle=6 D \Delta t$

Start 200 random walkers in two dimension near 0 Sketch where you expect to see the 200 points after they walk some time

```
Whiteboard,
    TA & LA
```

1. Particles will form a "wave" - a ragged ring of particles moving outward.
2. They will be mostly stay near 0 no matter how long you wait.
3. Many particles will remain near zero, but they will gradually spread out.

A simulation of many random walkers

Alex Morozov \&
Kerstin Nordstrom

Density as a function of position

Gaussian Distribution

Alex Morozov \&
Kerstin Nordstrom

Measure width at half the peak height. Measure the full width.

Since we only have a fixed number of walkers, the line is choppy!
The variability is equal to \sqrt{N} e.g. if on average we have

100 particles in a bin, variability will be 10

- If I wait four times longer, the width of the distribution increases by a factor?

Width increases by factor of 2

Whiteboard, TA \& LA

2D Simulations: Multiple representations

How many cross A in a time

Δt ?

- Number hitting A from left

$$
\frac{1}{2} n_{-}\left(A v_{0} \Delta t\right)
$$

- Number hitting A from right

$$
\frac{1}{2} n_{+}\left(A v_{0} \Delta t\right)
$$

- Net flow across A

$$
\frac{1}{2}\left(n_{-}-n_{+}\right)\left(A v_{0} \Delta t\right)
$$

- Define flux (per unit area per unit time) as J therefore:

$$
\begin{gathered}
J A \Delta t=\frac{1}{2}\left(n_{-}-n_{+}\right)\left(A v_{0} \Delta t\right) \\
J=\frac{1}{2} \Delta n\left(v_{0}\right)
\end{gathered}
$$

Fick's law

- 1D result

$$
J=-D \frac{d n}{d x} \quad D=\frac{1}{2} \lambda v_{0}
$$

Atoms move randomly in two containers. More atoms are on the left than on the right of a yellow gate. When the gate is suddenly lifted, some of the randomly moving atoms travel across the gate.

1. More go to the right
2. More go to the left
3. Equal amount goes left
 and right in random motion
4. Not enough information

The gradient

- If we want to take the derivative of a function of one variable, $y=d f / d x$, it's straightforward.
- If we have a function of three variables $f(x, y, z)$ - what do we do?
- The gradient is the vector derivative.

To get it at a point (x, y, z)

- Find the direction in which f is changing the fastest.
- Take the derivative by looking at the rate of change in that direction.
- Put a vector in that direction with its magnitude equal to the maximum rate of change.
- The result is the vector called $\vec{\nabla} f$

Fick's law

- 1D result

$$
J=-D \frac{d n}{d x} \quad D=\frac{1}{2} \lambda v_{0}
$$

- For all directions (not just 1D) Fick's law becomes

$$
\vec{J}=-D \vec{\nabla} n
$$

Diffusion is a simple example of emergent behavior.

- Mean Squared Displacement $\quad\left\langle(\Delta r)^{2}\right\rangle=6 D \Delta t$
- Fick's Law $\vec{J}=-D \vec{\nabla} n$

Connect DYNAMICS (Motion) to FORCES

- Pressure
- Ideal Gas law

How much force does air exert on a sheet of size $1 \mathrm{~m}^{2}$ with vacuum on the other side?

Equivalent to the weight of:1. 1 N2. Glass of Milk3. Gallon of Milk4. Person5. Car6. 10Ton truck7. 100 foot boat8. Building

