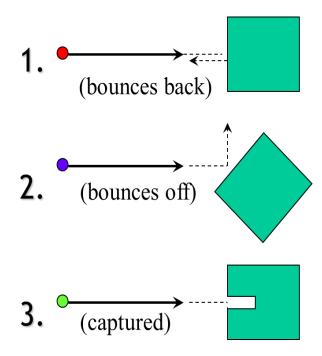
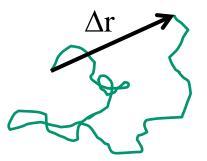
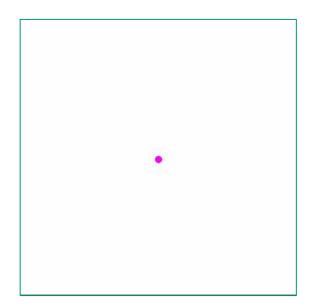
Physics 131-Physics for Biologists I



Professor: Wolfgang Losert wlosert@umd.edu


Midterm 2: November 8

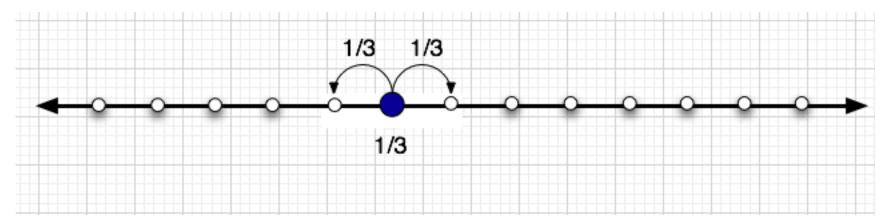

Office Hours before Midterm 2: Course Center: Monday Nov 4, 11am-12.30pm 3341 AV Williams: Wednesday Nov 6, 11.30am-1pm

Quiz 7: Average 6

Random Motion in two dimensions

If I wait four times as long, the (green) trajectory is on average longer by a factor ____?

If I wait four times as long, the distance between start and end point Δr is on average longer by a factor ____?


Alex Morozov & Kerstin Nordstrom

$$\left< \left(\Delta r \right)^2 \right> = 4D\Delta t$$

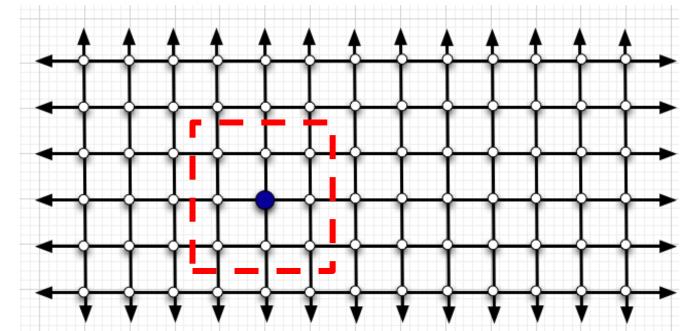
D is called *the diffusion constant* and has dimensionality $[D] = L^2/T$

What is the diffusion constant for the following process?

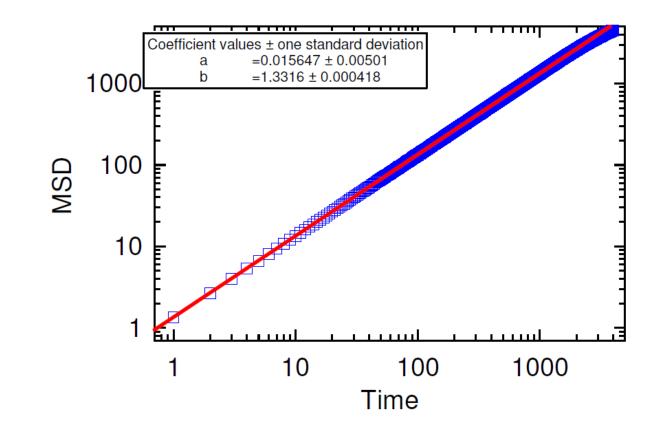
HINT: The motion is already random on ONE step

Distance traveled in one step: 1 nm Time taken for one iteration: 1 ns

1*Dimension*:
$$\left< \left(\Delta r \right)^2 \right> = 2D\Delta t$$


Diffusion Constant: 1/3 nm²/ns

Whiteboard, TA & LA


10/29/13

Compared to a 1D random walk if the walker can in addition also take a step in the second dimension following the same rules, the following is true about the Diffusion Constant D and the distance squared traveled $<\Delta r^2>$

- 1. $<\Delta r^2 >$ is larger by factor 2
- 2. $<\Delta r^2 >$ is larger by factor $\sqrt{2}$
- 3. $<\Delta r^2>$ is the same
- 4. $<\Delta r^2 >$ is smaller by factor $\sqrt{2}$
- 5. $<\Delta r^2>$ is smaller by factor 2

10/29/13

Random walk in 2D

/\r

- As a result of random motion, an initially localized distribution will spread out, getting wider and wider. This phenomenon is called *diffusion*
- The square of the average distance traveled during random motion will grow with time.