Physics 131-Physics for Biologists I
 Professor: Wolfgang Losert
 wlosert@umd.edu

Final exam:
Wednesday December 18th 6.30pm-8.30pm

Gravitational Fields

- A force field is an idea we use for non-touching forces.

It puts a vector at each point in space. The vector direction and length indicate the direction and magnitude of the force exerted by the surrounding system on our object of interest.

- For non-touching interactions (e.g. gravity) the force on the object of interest depends on mass. A gravitational field is a force field with this "coupling strength" (the mass) divided out so the field does not depend on what test object is used.

$$
\vec{g}=\frac{\vec{F}_{\text {acting on } m}}{m}
$$

Compare the gravitational field near the surface of the earth for a $\mathbf{1 k g}$ object and a 5 kg object. Vectors will have

1) The same direction
2) Same magnitude only
3) Same direction and magnitude
4) different direction and magnitude

Gravitational Forces and Fields

- Sketch the gravitational field (1) near the surface and (2) in another sketch where the earth is small

(Whiteboard, TA \& LA)

Earth

- Magnitude and direction of vector depend on position in space! We can ignore that if we are near the surface of the earth.

$$
\vec{F}(\vec{r})=\frac{G M_{E a r t h} m}{r^{2}} \hat{r}
$$

$\vec{g}(\vec{r})=\frac{G M_{\text {Earth }}}{r^{2}} \hat{r}$
Physics 131

What's this?

- Hint:

It's an animal.

- Hint: It's not oriented right.

How about this way?

Making sense

\square Does this help?

Making sense

- Our equations don't just provide a way of calculating something: They express relationships about the physical world.
- We have to "see the dog" in
 our equations.

Making Sense of the

Gravitational Force exerted by Earth on object of mass m
> Changing the object mass m
> Changing Mass of the Earth
> Changing the distance
> Specifying the direction
> Universal prefactor G

$$
\vec{F}(\vec{r})=\frac{G M_{E a r t h} m}{\longrightarrow r^{2}} \hat{r}
$$

Gravitational Forces and fields from multiple interactions ADD

$$
\vec{F}_{m}=\vec{F}_{M_{1} \rightarrow m}+\vec{F}_{M_{2} \rightarrow m}+\vec{F}_{M_{3} \rightarrow m}+\vec{F}_{M_{4} \rightarrow m}+\ldots
$$

$$
\vec{F}_{M_{1} \rightarrow m}=\frac{G M_{M_{1}} m}{r_{1}^{2}} \hat{r}_{1}
$$

