- Theme Music: Duke Ellington

Take the A Train

- Cartoon: Bill Amend FoxTrot

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \quad \text { No vectors! }
$$

- The potential energy between many charges is

$$
U_{12 \ldots N}^{e l e c}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
$$

Just add up
all pairs!

Foothold ideas:

Heat \& Temperature 1

- Temperature is a measure of how hot or cold something $-=3$ is. (We have a natural physical sense of hot and cold.)
- When two objects are left in contact for long enough they come to the same temperature.
- When two objects of the same material but different temperatures are put together they reach an average, weighted by the fraction of the total mass.
- The mechanism responsible for the above rule is that the same thermal energy is transferred from one object to the other: Q proportional to $m \Delta T$.

Foothold ideas:

Heat \& Temperature 2

- When two objects of different materials and different
 temperatures are put together they come to a common temperature, but it is not obtained by the simple rule.
- Each object translates thermal energy into temperature in its own way. This is specified by a density-like quantity, c, the specific heat.
- The heat capacity of an object is $C=m c$.
- When two objects of different material and different temperatures are put together they reach an average, weighted by the fraction of the total heat capacity.
- When heat is absorbed or emitted by an object $Q= \pm m c \Delta T$

Foothold ideas: Kinetic Theory

- Newton tell us that motion continues unless something unbalanced tries to stop it, yet motion always dies away
- The model of matter as lots of "Ittle particles in continual motion lets us "hide" energy of motion that has "died away" at the macro level in internal motion.
- Macroscopic energy associated with the motion of a is coherent; all parts of the object move in the same way. The object has a net momentum associated with its kinetic energy.
- Internal energy is incoherent. The molecules of the object move in random directions. Although individual molecules have kinetic energy and momentum, the net momentum of the object as a result of its thermal energy is zero.
- Temperature is basically the average mechanical energy of a molecule.

The Ideal Gas Law

Energy

- We can now expand our idea of energy to include more forms:
- 1. Coherent energy of motion (kinetic) of the center of mass of an object: $1 / 2 m v^{2}$
-2 . Coherent energy of location relative to other objects (potential) of the center of mass.
- 3. Incoherent internal energy of motion of the parts of an object (thermal)
- 4. Submolecular energy of internal structure (chemical)

Systems

- If total energy of everything conserved, conservation isn't useful. What matters is how energy is moved around in relation to parts we care about.
- Define systems:
- Isolated - does not exchange energy or matter with the rest of the world.
- Closed - exchanges energy but NOT matter with the rest of the world.
- Open - exchanges both energy and matter with the rest of the world.

First Law of Thermodynamics: Equations

- Total energy of a system (a set of macroscopic objects)

$$
E=K E+P E+U
$$

- Exchanges of energy between the system and the rest of the universe

$$
\Delta E=Q-W .
$$

- Exchanges of energy between the system and the rest of the universe ignoring coherent mechanical energy

$$
\Delta U=Q-W
$$

Foothold principles: Randomness

- Matter is made of of molecules in constant motion and interaction. This motion moves stuff around.
- If the distribution of a chemical is non-uniform, the randomness of molecular motion will tend to result in molecules moving from more dense regions to less.
- This is not directed but is an emergent phenomenon arising from the combination of random motion and non-uniform concentration.

Random walk

- As a result of random motion, Numberortrals $=1001$ an initially localized distribution will spread out, getting wider and wider. This phenomenon is called diffusion
- The width of the distribution will grow like

$$
\left\langle(\Delta r)^{2}\right\rangle=2 D t
$$

- D is called the diffusion constant and has dimensionality $[D]=\mathrm{L}^{2 / T}$

Fick's law

- 1D result

$$
J=-D \frac{d n}{d x} \quad D=\frac{1}{2} \lambda v_{0}
$$

- For all directions (not just 1D) Fick's law becomes

$$
\vec{J}=-D \vec{\nabla} n
$$

The gradient

- If we want to take the derivative of a function of one variable, $y=d f / d x$, it's straightforward.
- If we have a function of three variables $f(x, y, z)$ - what do we do?
- The gradient is the vector derivative.

To get it at a point (x, y, z)

- Find the direction in which f is changing the fastest.
- Take the derivative by looking at the rate of change in that direction.
- Put a vector in that direction with its magnitude equal to the maximum rate of change.
- The result is the vector called $\vec{\nabla} f$

What's a gradient good for?

- Flow is often driven by a change of a scalar quantity:
- Diffusion - Fick's law (concentration gradient)
- Fluid flow - HP law (pressure gradient)
- Heat flow - Fourier's law (temperature gradient)
- Electric current flow - Ohm’s law (voltage gradient)
- Force is the gradient of potential energy

$$
\vec{F}_{\text {type }}=-\vec{\nabla} U_{\text {type }}
$$

How we develop probabilistic laws

- We model our system as having states that are fully detailed and equally probable (microstates).
- We then count the number of microstates that could correspond to a given state of interest (macrostate).
- We take the probability of the macrostate as proportional to the number of microstates.
- The result is "statistics."

The Second Law

- When a system is composed of a large number of particles, the system is exceedingly likely to spontaneously move toward the thermodynamic (macro)state that corresponds to the largest possible number of particle arrangements (microstates).

A probabilistic law

- Since the $2^{\text {nd }}$ law relies on probability, it is not an "exact" law.
- It imagines a physical system running through lots of microstates but being most of the time in microstates that correspond to the most probable macrostate.
- The fraction of time that the system is NOT in the most probable macrostate is proportional to $1 / \sqrt{ } \mathrm{N}$.

