December 5, $2011 \quad$ Physics $131 \quad$ Prof. E. F. Redish
■ Theme Music: Might Could Adrift
■ Cartoon: Hillary Putnam
Rhymes with Orange

Outline

■ Fick's law

- The kinetic theory of diffusion

■ Gradients

- Gradient driven flow
- Forces and potential energy

■ Examples

Diffusion:

Fick's law (1D analysis)

- Uniform fluid containing (red) molecules with a varying concentration.
■ Fluid molecules jiggle the (red) molecules around.

Fick's law: a simplified model of diffusion

■ The red molecules do a random walk (as a result of collisions with fluid molecules)
■ Assume

- Uniform density in each bin
- Ignore up/down motions
- Move with uniform (average) velocity
- Choose bin width to be average distance red molecule travels before colliding.
- Ask net amount going through a surface of area A in a time

How many cross A in a time Δt ?

- Number hitting A from left $=\frac{1}{2} n_{-}\left(A v_{0} \Delta t\right)$
- Number hitting A from right $=\frac{1}{2} n_{+}\left(A v_{0} \Delta t\right)$
■ Net $=\frac{1}{2}\left(n_{-}-n_{+}\right)\left(A v_{0} \Delta t\right)$
- Rate (per unit area per unit time) $=$

$$
J=\frac{1}{2}\left(-\frac{d n}{d x} \lambda\right) v_{0}=-\left(\frac{\lambda v_{0}}{2}\right) \frac{d n}{d x}
$$

Fick's law

■ 1D result

$$
J=-D \frac{d n}{d x} \quad D=\frac{1}{2} \lambda v_{0}
$$

■ For all directions (not just 1D) Fick's law becomes

$$
\vec{J}=-D \vec{\nabla} n
$$

The gradient

■ If we want to take the derivative of a function of one variable, $y=d f / d x$, it's straightforward.
■ If we have a function of three variables $f(x, y, z)$ - what do we do?

- The gradient is the vector derivative.

To get it at a point (x, y, z)

- Find the direction in which f is changing the fastest.
- Take the derivative by looking at the rate of change in that direction.
- Put a vector in that direction with its magnitude equal to the maximum rate of change.
- The result is the vector called $\vec{\nabla} f$

What's a gradient good for?

\square Flow is often driven by a change of a scalar quantity:

- Diffusion - Fick's law (concentration gradient)
- Fluid flow - HP law (pressure gradient)
- Heat flow - Fourier's law (temperature gradient)
- Electric current flow - Ohm's law (voltage gradient)
\square Force is the gradient of potential energy

$$
\vec{F}_{t y p e}=-\vec{\nabla} U_{t y p e}
$$

