Foothold ideas: Dimensions and units

- Each measurement is a counting of something. It matters what kind of thing we are counting.
- The kind of counting we are doing is expressed in terms of basic types: dimensions (M, L, T).
- Only measurements of the same dimensionality can be added or equated since the dimensionality tells how the measurement changes when the scale is changed. (cf., length [L], area [L^{2}], volume [L^{3}])
- The specific scale chosen for a measurement is the unit.

Foothold ideas: Velocity

- Velocity is the rate of change of position
- Average velocity
$=$ (how far did you go?)/(how long did it take you?)

$$
\langle v\rangle=\frac{\Delta x}{\Delta t}
$$

■ Instantaneous velocity $=$ same
(but for short Δt)

$$
v=\frac{d x}{d t}
$$

Foothold ideas: Vector velocity

- A displacement - a change in position has a direction. This means

$$
\text { velocity }=\text { displacement/time interval }
$$

has one too.

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \\
& v_{x} \hat{i}+v_{y} \hat{j}=\frac{d}{d t}(x \hat{i}+y \hat{j})=\left(\frac{d x}{d t}\right) \hat{i}+\left(\frac{d y}{d t}\right) \hat{j}
\end{aligned}
$$

Foothold ideas: Acceleration

- Average acceleration is defined by

$$
\langle\vec{a}\rangle=\frac{\Delta \vec{v}}{\Delta t}=\frac{\text { change in velocity }}{\text { time it took to do it }}
$$

```
Note: an average
acceleration goes
witha time interval.
```

- Instantaneous acceleration is what we get when we consider a very small time interval (compared to times we care about)

$$
\vec{a}=\frac{d \vec{v}}{d t}
$$

```
Note: an instantane ous
acceleration goes with
a specific time.
```


What have we learned?

- Position

$$
\hat{r}=x \hat{i}+y \hat{j}
$$

(where x and y are signed lengths)

- Velocity

$$
\begin{array}{ll}
\langle\vec{v}\rangle=\frac{\Delta \vec{r}}{\Delta t} & \vec{v}=\frac{d \vec{r}}{d t} \\
\langle\vec{a}\rangle=\frac{\Delta \vec{v}}{\Delta t} & \vec{a}=\frac{d \vec{v}}{d t}
\end{array}
$$

- Acceleration
- Seeing from the motion
- Seeing consistency (graphs \& equations)

Newton' s Laws: Version 1.0

- Newton 0:
- An object responds to the forces it feels when it feels them.
- Newton 1:
- An object that feels a net force of 0 keeps moving with the same velocity (which may $=0$).
- Newton 2:
- An object that is acted upon by other objects changes its velocity according to the rule

$$
\vec{a}_{A}=\vec{F}_{A}^{n e t} / m_{A}
$$

- Newton 3:
- When two objects interact the forces they exert on each other are equal and opposite.

$$
\vec{F}_{A \rightarrow B}^{\text {type }}=-\vec{F}_{B \rightarrow A}^{\text {type }}
$$

Kinds of pForces

- pForces are what objects do to each other when they touch.
- If a pForce is a
- Normal pForce N
- Weight pForce W
- Tension pForce T
- Friction pForce f
- Electric pForce F^{E}
- Magnetic pForce F^{M}
- Notation convention.
\vec{F} (object causing force) \rightarrow (object feeling force)

Tension: The Spring

- Recall what we have learned about a spring.
- A spring changes its length in response to pulls (or pushes) from opposite directions.

$$
T=k \Delta l
$$

Friction

- When the surfaces are not sliding on each other, the friction force may take any value up to a maximum. $f_{A \rightarrow B} \leq f_{A \rightarrow B}^{\max }=\mu_{A B}^{\text {satic }} N_{A \rightarrow B}$
- When the surfaces are sliding on each other, the friction force is a constant value (usually less than the maximum possible).

$$
f_{A \rightarrow B}=\mu_{A B}^{\text {kinetic }} N_{A \rightarrow B} \quad \mu_{A B}^{\text {kinetic }} \leq \mu_{A B}^{\text {static }}
$$

Viscosity

- When sheets of fluid move over each other there is an "internal friction" that resists the sliding - but it's proportional to the relative speed.
- When a solid moves through a fluid it drags the fluid with it - which drags the fluid over fluid leading to a resistive force.
- For a sphere moving through a liquid

$$
F_{\text {liquid } \rightarrow \text { sphere }}^{v i s o u s}=-6 \pi \mu R v
$$

Drag

- When a solid object moves through a fluid it has to speed up the fluid in front of it.
- It has to exert a force on the bits of the fluid in front of it to bring it up to the object's speed. By N3, the fluid exerts a force back on the object.
- For a sphere moving through a fluid

$$
F_{\text {fluid } \rightarrow \text { sphere }}^{d r a g}=-C d A v^{2}
$$

The Gravitational Field Strength

- We find that, when we can ignore the effects of other objects (the air), that all objects accelerate the same in free fall (only W acting).

$$
\vec{a}_{A}=\frac{\vec{W}_{E \rightarrow A}}{m_{A}}=\vec{g} \quad \text { (independent of A!) }
$$

- Experimentally, this is a constant independent of the object. Therefore $\vec{W}_{E \rightarrow A}=m_{A} \vec{g}$
- Define the constant g as the gravitational field strength. (Units of N / kg)

Foothold Ideas: Gravity

- Every object (near the surface of the earth) feels a downward pull proportional to its mass:

$$
\vec{W}_{E \rightarrow m}=m \vec{g}
$$

What object
causes W?
where \vec{g} is referred to as the gravitational field.

- This is a pForce even though nothing touching the object is responsible for it.
- The gravitational field has the same magnitude for all objects irrespective of their motion and at all points.
- The gravitational field always points down.
- It is measured to be $g \approx 9.8 \mathrm{~N} / \mathrm{kg}$

Response to Gravity: Free Fall

- After an object has been released,
- if it is dense enough so the forces from the air can be ignored
- if nothing else is touching it
the only force acting on it is gravity.

$$
\vec{a}=\vec{F}^{n e t} / m=\vec{W}_{E \rightarrow m} / m=m \vec{g} / m=\vec{g}
$$

"How we think" Icons

- Cat television
- Measurement
- Consistency
- Making sense

- Multiple representations
- Shopping for ideas
- Foothold ideas
- The implications game

15

