September 7, $2011 \quad$ Physics $121 \quad$ Prof. E. F. Redish
■ Theme Music: Wynton Marsalis Where or When?
■ Cartoon: Jim Davis
Garfield

Useful numbers (people)

Numbers	
Number of people on the earth	~ 7 billion $\left(7 \times 10^{9}\right)$
Number of people in the USA	~ 300 million $\left(3 \times 10^{8}\right)$
Number of people in the state of Maryland	~ 5 million $\left(5 \times 10^{6}\right)$
Number of students in a large state university	$\sim 30-40$ thousand $\left(3 \times 10^{4}\right)$
Physiss 131	

Useful numbers (distances)

Macro Distances	
Circumference of the earth	$\sim 24,000$ miles (1000 miles/ time zone at the equator)
Radius of the earth*	$2 / \pi \times 10^{7} \mathrm{~m}$
Distance across the USA	~ 3000 miles
Distance across DC	~ 10 miles
$97 / 11$	Physics 131

Useful numbers (bio)

Bio Scales	
Size of a typical animal cell	$\sim 10-20$ microns $\left(10^{-5} \mathrm{~m}\right)$
Size of a bacterium, chloroplast, or mitochondrion	~ 1 micron $\left(10^{-6} \mathrm{~m}\right)$
Size of a medium-sized virus	~ 0.1 micron $\left(10^{-7} \mathrm{~m}\right)$
Thickness of a cell membrane	$\sim 5-10 \mathrm{~nm}\left(10^{-8} \mathrm{~m}\right)$
$9 / 7 / 11$	

Foothold ideas

■ We may choose to use an idea for a while - as a "foothold," to see how it works, and perhaps reject it later in favor of a replacement or refinement.

- These ideas become the basic principles we will use to reason - the "stakes in the ground" of our safety net.

Foothold ideas: Dimensions and units

- Each measurement is a counting of something. It matters what kind of thing we are counting.
- The kind of counting we are doing is expressed in terms of basic types: dimensions (M, L, T).
- Only measurements of the same dimensionality can be added or equated since the dimensionality tells how the measurement changes when the scale is changed. (cf., length [L], area [L^{2}], volume [$\left.\mathrm{L}^{3}\right]$)
- The specific scale chosen for a measurement is the unit.

Cat television

- When we do science, we don't try
 to solve the entire universe at once.
- We restrict our considerations to a limited set of data and try to understand it. Only when we get it do we try to expand further to more situations.
- This is like looking out a window onto a small segment of the world.
Since cats like to do this, I call the process
"choosing a channel on cat television."

The Main Question (for this term, at least)

- Start by choosing a big question
 and then refining it:

How do things move?

Why choose this?

-concepts of measurement, rate of change force are fundamental
-ties to everyday experience so can use and learn to build/refine intuition

Describing Motion: Space

■ Coordinates - telling where something is

- What do we need to do to specify the location of something so someone else can find it?
- Note the difference between "length" or "distance" and "position"
- Representing a position mathematically.

Motion along a straight line (1-dimensional coordinates)

■ We specify which direction we are talking about by drawing a little arrow of unit length in the positive direction.

- We specify that we are talking about this arrow in symbols by writing \hat{i}
- A position a distance x from the origin is written $\vec{r}=x \hat{i}$
■ Note that if x is negative, it means a vector pointing in the direction opposite to \hat{i}

Coordinates and Vectors

- Set up a coordinate system
- Pick an origin
- Pick perpendicular directions
- Choose a measurement scale
- Each point in space in then specified by three numbers: the x, y, and z coordinates.
- The position vector for a particular position is an arrow drawn from the origin to that position.

Motion in a plane (2-dimensional coordinates)

■ We specify the directions we are talking about by drawing two little arrows of unit length in two perpendicular directions.
■ " x " and " y " are called the coordinates and can be positive or negative.

- A position vector always starts from the origin.

Describing Motion: Time

- Time - if we' re to describe something moving we need to tell when it is where it is.
- Time is a coordinate just like position
- We need an origin (when we choose $t=0$)
- a direction (usually times later than 0 are +)
- a scale (seconds, years, millennia)
- Note the difference between
- clock reading, t
- a time interval, Δt

Graphing Position

- Graphs for the eye vs. graphs for the mind.
- Describe where something is in terms of its coordinate at a given time.
- Choose origin
- Choose axes
- Choose scale
- Set scales on graph
- Take data from video
- Construct different graphs
- Fit the graphs with math functions

