SOUND WAVES-BEATS

What would you hear (detect) if two sound waves of slightly* different frequencies arrived at your ear at the same time.

Let us put detector at x = 0 and have two waves

$$S_1 = S_m Sin(kx + wt)$$

$$\frac{w}{k} = V_s = \frac{w'}{k'}$$

$$S_2 = S_m Sin(k'x + w't)$$

$$x = 0$$

$$\omega \qquad S_1$$

$$\omega \qquad S_2$$

Ear

Superpose S_1 and S_2 at x = 0

$$S = S_m(Sinwt) + S_mSin(w't)$$
$$= 2S_mCos(\frac{w - w'}{2})t\cos(\frac{w + w'}{2})t$$

*
$$(w-w') \ll w$$
 $[(f'-f) \ll f]$ so $\frac{w+w'}{2} \approx w$

$$S = 2SinCos[2\pi(\frac{f-f'}{2})t]Sinwt$$

So you perceive a wave of frequency f whose amplitude varies as

$$Cos \frac{2\pi(f-f')}{2}t$$

or at a frequency $\Delta = (\frac{f - f'}{2})$

That is if you plot amplitude as a function of t you get:

Amp.

Note that in one period there are two maxima and two zeros so you will detect

$$f_{\scriptscriptstyle R} = |f - f'|$$

 $f_{\rm B}=\mid f-f'\mid$ as the number of Beats when both sounds arrive together, you hear one frequency, but its amplitude has |f - f'| maxima and |f - f'| zeros every second.

The two bars in the Demo had frequencies f = 440Hz and f' = 445Hz you heard 440Hzand five zeros/maxima per second.