MAXWELL’S EQUATIONS: RADIATION — LIGHT

To summarize, the field Equations derived from Experiments are:
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When Maxwell began to study these equations, he realized that there was a serious
problem. Scientists believe that at 1ts most fundamental level nature must be symmetric,

Maxwell noticed that whereas a time varying flux of B gave rise to an E -field { ve in Eq. (3)}

there was no correspondlng term in Eq. (4°). He immediately asserted that the above field
equations could not be regarded as being complete. This was a FUNDAMENTAL PROBLEM
Maxwell also noted a “PRACTICAL PROBLEM” in using Eq. (4). Imagine that we charge a
capacitor to tq and then connect a wire between the two plates as shown,
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It is clear that a conduction current A—? begins to flow through the wire and so [using Eg. (4')] it

must create a B -field encircling the wire as shown. However, as soon as you cross one of the
- ’ -
 capacitor plates, both the current and § must be zero, Again, Maxwell asserted that such a

discontinuity cannot be physically meaningful,
To resolve the fundamental problem Maxwell postulated that if the flux of E varies with
5 :

time it must be equivalent to a current. He called this new type of current a displacement current

Ag,
and introduced the definition i, = g, %— . (3)
Of course, Eq. (4') implies that every current generates a B so Maxwell “completed” Eg. (4')
by writing % ¢ BAL= o3 I+ 8y A¢r “4)

Where I, exphcltly signifies a conduction current = flow of charge in a conductor while the
.. second term on the right comes from i,[£q. (5)].

Let us see if introduction of i, also solves the practical problem. If the capaCItor plates
have an area 4 the E -field between them is
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[i, is from —ive to +ive because of A_(j is —ive]

Since i, = i, we will have no discontinuity in either the cutrent or the B -field on crossing
-

the capacitor plate.
Maxwell has solved both the fundamental and the practical problem by proposing £g. (5).
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MAXWELL”S EQUATIONS

GAUSS’ Law for Coulomb £ :

Since a stationary charge generates a Coulomb £ field, the TOTAL flux of E ou
THROUGH a closed surface is determined solely by the charges located in the volume
enclosed by that surface,
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GAUSS’  Law for B:

Since the elementary generators of B are point magnetic dipoles the TOTAL flux of B
THROUGH a closed surface is always ZERO: ’
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FARADAY - LENZ Law.

If the flux of B varies with time a Non-Coulomb E field will appear in every closed-
“loop” surrounding the region where the flux of B is varying. The sense of {?_{\,g is
invariably such as to oppose the variation in the flux of B that causes it. Hence,
. circulation of E_Nq around a clo_sé loop is determined by the time rate of change of flux
of B through the area within the loop; [Note: Crucial negative sign]:
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'MAXWELL - AMPERE Law:

Every current generates a B field that circulates around it. There are two types of
current: (i) Conduction current which involves flow of charge in a conductor and (ii)
displacement current which arises when flux of E field varies with time. Hence, Circulation of
B around a closed loop is determined by currents threading the surface on which the loop is
drawn,
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CAUTION: i, exists in vacuum. It never involves flow of charge. No conduction current can
exist inside the capacitor!!!

Maxwell’s Equations (1) tlirough (4) have profound consequences, Let us recall his work
using these in outer space, where there is vacuum, ¢=0, i, = 0 so the Equations become:
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and now indeed there is total symmetry with respect to £ and B, This is what led Maxwell to |
- -
propose that rather than think of £ and B fields, one should think of a single entity:

Electromagnetic or EM field

And call Equations I through IV, EM field Equations. He next used these Equations to predict
that in vacuum there must exist EM-waves! He was able to show that the structure of these
Equations is such that both the £ and B have the functional form (propagation along x for

- -

exampie) f(x £ ct). Thatis, they propagate as an Electromagnetic wave with the enormous

1
speed ¢ = =3x10°% . This was a giant step forward: Maxwell had solved the problem
v oo

of the nature of Radiation or Radiant energy, = Radlatlon is an Electromagnetic wave. Our
observable universe = Matter + Radiation

Incidentally, Einstein demonstrated that matter and radiation convert into one another there by
further simplifying our picture of the universe.
- Heat

- Light
- X-rays
- radiowaves

are all cases of EM waves. They are distinguished only by their frequencics (or wavelengths).
~ (see below)




Periodic EM Waves

As before a periodic EM wave will be represented by -

E=E, sin(—zf?i + Zﬂj = E, sin(kx — o)
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In vacuum EM-waves are totally transverse:
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Indeed for a wave travelling in positive x direction £, || $ and §,;, |z
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Propagating EM-Wave
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In vacuum EM-waves have an enormous speed (symbol c)
c=3x10°m/sec. _ | “)
In Vacuum the Eand B fields are related by the equation (

E=cB (5)
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‘The EM wave also transports energy because energy is stored in the £ and B fields. Earlier, we

have proved that per m’ the fields carry the energies
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Here, &yand are constants, roughly,
. g, =9%x10" F/m
23 -1 73142 F
(5, Q'MLT 41 Scalar)

, _ Lo =4 %107 H/m
(p, MLQ™ A Scalar)

It is notable that speed of EM wave is
' 1
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so that, because of ™ ; Eq(5), in an EM wave
’ Mg =Mg
hence 1m’ of an EM-wave carries the energy
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As in the case of sound we can calculate the intensity of an EM-wave by using (11).

Intensity = Energy Transported per Unit Area per Unit Time
So imagine a tube of cross-sectional area 1 m* “filled” with an EM wave.

EM Wave
(4=1m") — .
. Im
If its length is 1m then at any instant the energy stored in it is
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Where E* = E,” sin® (ke — wi)
B* = B, sin’ (kx — wt)
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The average value of the energy will be
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In one second this energy will travel by ¢ meters so energy transport per m” per second becomes
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From g practical point of view, if a point source of EM waves emits P joules/sec the intensity at a
distance » will be _

<Mgy >=——

exactly as noted earlier for sound.

Spectrum of EM-Waves — Light

 EM waves are essentially ubiquitous. The following table illustrates this point succinctly.

Wavelength (in vacuum) -

Name' Frequency

AM Radio 100 kHz kms

FM Radio 100 MHz 3m’

TV - uHF 300 MHz Im

Microwaves 1-100 GHz 0.1m - 0.003m
Infrared (Heat Radiation) 102 10" Hz 10°m

Light 10" -10" Hz 400nm — 700nm
UV 10" 10" Hz 100nm

X-rays 10" Hz 1nm

y -rays 10 Hz, 1pm

To Summarize:

What is light?: Light is a transverse EM wave whose wavelength in vacuum (air) lies between
400nm and 700nm and speed in vacuum is 3x10%m/sec .




Wave on a string: Power

1
=5 HA v ,
7 [Average Energy stored per unit length
v= |— multiplied by velocity]
H
Sound: Intensity
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EM-wave Light: Intensity -
Bm2 1 2
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1 [Average Energy stored per unit volume
€= Lo multiplied by velocity]

In general, the propagation of a light wave is best visualized by using a construct dueto -
Huygens’. As the light waves spread out of a point source at some time later they essentially
form a spherical “wave front”, a surface of constant phase. Huygens’ proposed that one should
treat each point of the wave front as a point source of light from which spherical wavelets
emanate and a spherical surface tangent to all the wavelets locates the new wave front at a later
instant, This is shown schematically in the figure. The direction of propagation is along the
normal to the wave front — radical for a point source,




