GENERATION OF A B FIELD

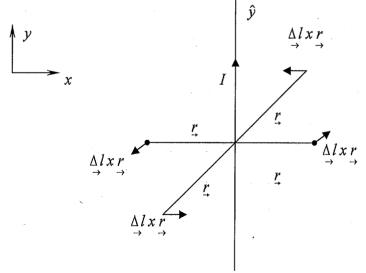
We have seen that a stationary charge experiences a force in an \underline{E} -field and a stationary charge generates a Coulomb \underline{E} -field. Now we know that a moving charge feels a force in a \underline{B} -field so it is natural to expect that a moving charge, such as a current in a conductor, will generate a \underline{B} -field. This is the content of the so-called Biot-Savart law. A current I in a conductor of length ΔI will generate a \underline{B} -field at a point \underline{r} away from the conductor given by the equation

$$\Delta \underline{B}(\underline{r}) = \frac{\mu_0}{4\pi} I \frac{\Delta l x \underline{r}}{r^3}$$

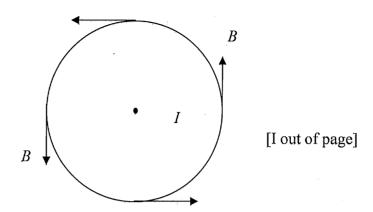
Where $\mu_0 = 4\pi \times 10^{-7} \frac{T - m}{A}$ is a universal constant. We will not use this equation in detail but, as shown next, it gives a very important cue as to the direction of ΔB .

CASES OF SPECIAL INTEREST.

Single current – I in a long wire: What can we say about B-field at a distance r from the wire? Notice that $\Delta l \parallel + \hat{y}$. And the vector $\Delta l \times r$ is perpendicular to both Δl and r so we can say that B must curl around the wire.



B

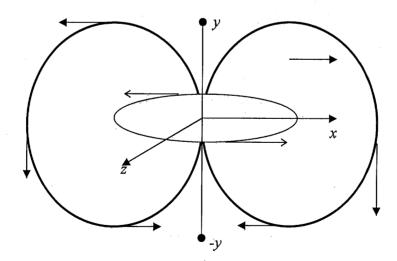


Looking end on (see picture) we have cylindrical symmetry so B can be a function of r only. It turns out that $B = \frac{\mu_0 I}{2\pi r}$

so,
$$B = \frac{\mu_0 I}{2\pi r} \hat{\varnothing}$$

Thus, B is said to be Azimuthal, $\hat{\emptyset}$ is the direction which curls around I. [check with the sheet on right hand rules].

Next, take the wire and make a circular loop out of it, put it in xz-pl. with center at the origin. What is the B-field at y or -y?



The B-field lines are shown schematically, it turns out that

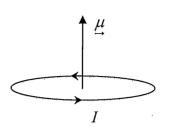
$$B(y) = B(-y) = \frac{\mu_0}{4\pi} \frac{2I\pi a^2}{(a^2 + y^2)^{\frac{1}{2}}} \hat{y}$$

Once again, we encounter $IA\hat{n}$ so we can write using magnetic (dipole) moment

$$B(y) = \frac{\mu_0}{4\pi} \frac{2\mu}{(a^2 + y^2)^{\frac{3}{2}}}$$

Far away from $\mu, y >> a$

$$B(y) = \frac{\mu_0}{4\pi} \cdot \frac{2\mu}{y^3} \leftarrow \text{Magnetic Dipole}$$

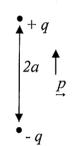


Recall that for an Electric Dipole

$$p = 2qa\hat{y}$$

and the E-field at y is

$$E(y) = \frac{1}{4\pi\varepsilon_0} \frac{4qay}{\left(y^2 - a^2\right)^2} \hat{y}$$

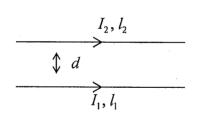


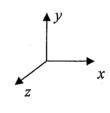
so that at y >> a

$$E(y) = \frac{1}{4\pi\varepsilon_0} \frac{2p}{y^3} \leftarrow \text{Electric Dipole}$$

Very Important! However, there is a major difference here: along y the magnetic dipole has no "size" while electric dipole has length (2a). You can split the latter but not the former. This has the extremely important consequence that whereas electric-field lines start at +q and end at -q, magnetic field lines close on themselves there is no beginning and no end.

Current-Current force

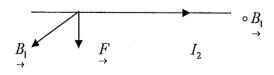




Two wires of lengths l_1, l_2 carry currents I_1, I_2 . Separation d along y, wires parallel to x. Force on I_2 due to I_1 . To calculate this first, write B_1 at location of I_2

$$B_I = \frac{\mu_0 I_1}{2\pi d} \hat{z}$$

So I_2 is located in $B_1: F_{I_2}$ looks like

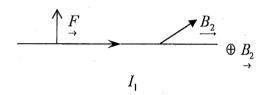


and is given by

$$\begin{split} \underline{F_{I_1I_2}} &= I_2 \underline{\Delta I_2} \times \underline{B_1} \\ &= -\frac{\mu_0 I_1 I_2 I_2}{2\pi d} \, \hat{y} \end{split}$$

Force is attractive Force on I_1 due to I_2

$$\begin{split} \underline{B_2} &= \frac{-\mu_0 I_2}{2\pi d} \, \hat{z} \\ \underline{F_{I_1 I_2}} &= I_1 \underline{\Delta I_1} \times \underline{B_2} \\ &= \frac{\mu_0 I_1 I_2 I_1}{2\pi d} \, \hat{y} \end{split}$$



Force is attractive. If $l_1 = l_2 = 1$ meter the forces/meter $F = \frac{-\mu_0 I_1 I_2}{2\pi d} \hat{d}$ are an action-reaction pair. The -sign with \hat{d} ensures force is attractive if I_1 I_2 parallel \rightarrow and repulsive when they are anti-parallel \rightarrow [You will do an experiment to check this equation] \leftarrow

Incidentally, this is a <u>very fundamental equation</u> as it is used to define the unit of current- The Ampere. That is,

If
$$I_1 = I_2 = 1$$
amp And $d = 1$ meter

Force per meter is
$$2 \times 10^{-7} N$$
 $\left(\frac{\mu_0}{2\pi}\right)$

And the claim is that I should be regarded as a "DIMENSION" in place of Q. So we can write L, T, M, θ , [IT]

rather than

$$L$$
, T , M , θ , Q