FORMATION OF IMAGE - MIRRORS

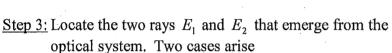
General Construct to locate image of a point object O using the laws of reflection and refraction to locate the path of light

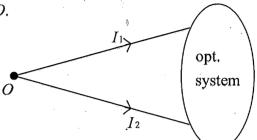
Step1: Take two incident rays I_1 and I_2 starting from O.

Step 2: Follow them trough the optical system using r = i for reflection

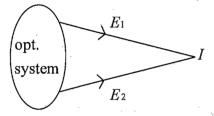
and

 $n_2 \sin R = n_1 \sin i$ for refraction





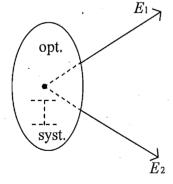
Case I



Point of intersection of E_1 and E_2 defines position of image I. Here, light actually goes through the point I so it is called a REAL IMAGE

Note: A real image can be projected on a screen.

Case II



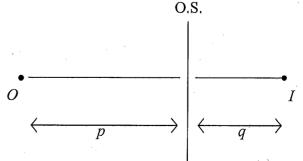
 E_1 , E_2 are diverging so they will not intersect. You will have to extrapolate the E_1 , E_2 lines to locate the image $\mathbb Z$ as the point from which E_1 , E_2 "appear" to be coming. No light actually goes through $\mathbb Z$ so it is called a VIRTUAL IMAGE

Note A virtual image cannot be projected on a screen (your eye can see it)!

SOME DEFINITIONS

p = distance of object from opt. system (O.S.)

q =Distance of image from opt. system



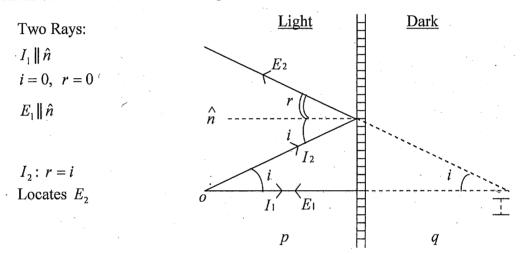
Magnification
$$m = \frac{\text{size of image}}{\text{size of object}} = \frac{-q}{p}$$

The minus sign on the right side ensures that for a single element O.S. all real images (q positive) are inverted (m negative) while all virtual images (q negative) are upright (m positive).

MIRROR

A mirror is an optical system in which only reflections occur; so there is a light-side and a dark side. We use the "sign" convention that distances are "positive" on light side and "negative" on dark side.

1. <u>Plane Mirror</u>: Plane, silvered sheet of glass



 $E_{\rm 1}$ and $E_{\rm 2}$ diverge. Locate image by extrapolation to \mathbb{T} .

q is negative

Image is virtual, clearly |q| = p

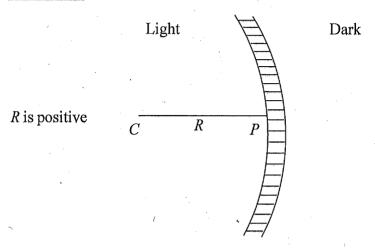
$$m = \frac{-q}{p} = +1$$

upright, virtual image is as far behind the mirror as the object is in front of it.

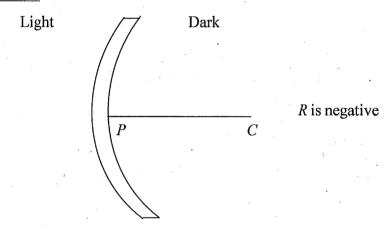
2. Spherical Mirrors: Mirror cut from a spherical shell of radius R.

Two Cases Arise

A. <u>CONCAVE</u> CENTER OF SPHERE IN FRONT OF MIRROR.

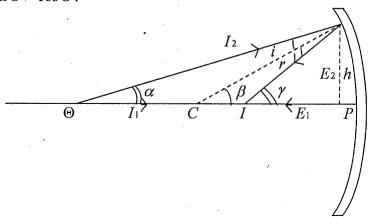


B. CONVEX CENTER OF SPHERE BEHIND MIRROR



A Images in Concave Mirror

We will consider only paraxial rays, that is all angles are taken to be very small $so sin \approx tan \Theta \approx cos \Theta$.



Same construct. I_1, I_2 start from 0, after reflection we get E_1, E_2 , intersection locate I.

Equations

$$\beta = \alpha + i$$

$$\gamma = \beta + r$$

$$i = r$$

Hence

$$\gamma = \beta + i = 2\beta - \alpha$$

Or

$$\gamma + \alpha = 2\beta$$

Angles are small, hence

$$\tan \gamma + \tan \alpha = 2 \tan \beta$$

$$\frac{h}{IP} + \frac{h}{OP} = \frac{2h}{CP}$$

$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R}$$

Or

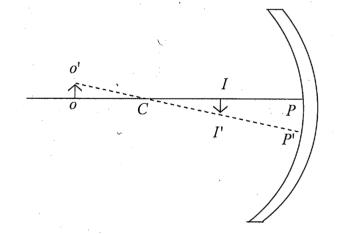
And combine with

$$m = \frac{-q}{p} \tag{2}$$

These two equations describe all possible images, and their sizes, formed by a concave mirror.

OBJECT SIZE

i) Small Object
Rotate picture about the center (of curvature) *C*. The above calculations apply. Our assumption of paraxial rays requires that all objects are small.



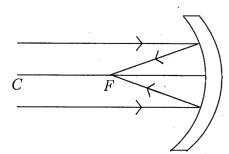
(1)

SPECIAL CASES [Eqs. (1) and (2)]

1

$$p \to \infty$$
, $q = \frac{R}{2}$

 $p \rightarrow \infty$ implies that incident light is a parallel beam, and we learn that when a parallel beam falls on the mirror, after



reflection it converges to a point. This defines the focus and the focal length

$$f = \frac{R}{2}$$

So

$$p \to \infty, q \to f \qquad m \to 0$$

$$m \rightarrow 0$$

Real Image

Concave mirror makes parallel light converge to a point hence Concave mirror = CONVERGENT MIRROR

NOTE NO REAL IMAGE CAN COME CLOSER TO THAN f!

ΪI p > R object lies beyond C.

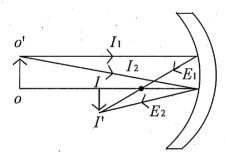
$$\frac{1}{q} = \frac{2}{R} - \frac{1}{p} = \frac{2p - R}{pR}$$

$$\frac{p}{q} = \frac{2p - R}{R} = \frac{2R - R}{R} > (2 - 1) > 1$$

So q < R

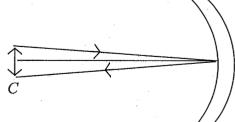
$$m=\frac{-q}{p}, |m|<1$$

Inverted, Real, Reduced Image



IIIp = R, q = R, m = -1 [Lamp Expt.]

> Object lies at C. All light falls on mirror at i = 0, so it leaves at r = 0 and goes right back to C.



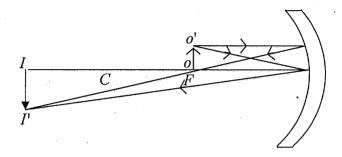
REAL, INVERTED IMAGE SAME SIZE AS OBJECT.

IV p < R: Object lies between C and F

$$\frac{p}{q} = \frac{2p - R}{R} = \frac{\langle (2R - R) \rangle}{R} = <1$$

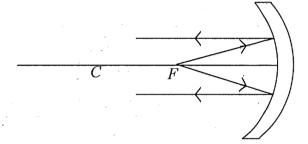
$$q > R$$
, $m = \frac{-q}{p}$, $|m| > 1$

Invested, Real, Enlarged Image



V' p = f, object at $F, q \to \infty$, $m \to \infty$ Point source at F on reflection

produces a parallel beam.

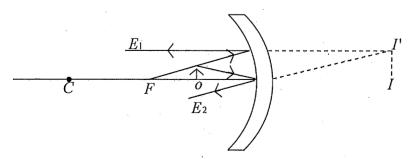


VI p < f, object closer to mirror than F, Since

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

This equation cannot be satisfied unless q becomes <u>negative</u>: IMAGE IS BEHIND MIRROR, ON THE DARK SIDE.

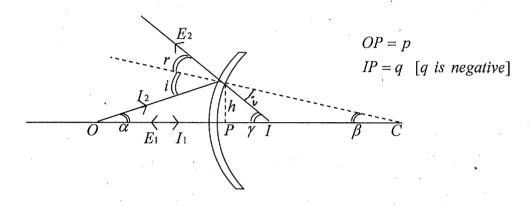
We get a VIRTUAL, ENLARGED IMAGE



<u>To Summarize</u>: Start O far away, I at f (closest to mirror), bring O closer, I moves away from mirror, gets bigger but remains inverted real, O at C, I at C, M = -1, O between C and F, I beyond C, enlarged, inverted, real, O at F, $I \to \infty$, Parallel light, O closer than F, I goes <u>BEHIND</u> mirror becomes virtual and upright.

B Images in Convex Mirror

R is Negative



Equations

$$\gamma = i + \beta$$

$$i = \alpha + \beta$$

$$\gamma = \alpha + 2\beta$$

$$\alpha - \gamma = -2\beta$$

$$\tan \alpha - \tan \gamma = -2\tan \beta$$

$$\frac{h}{p} - \frac{h}{q} = \frac{-2h}{R}$$

$$\frac{1}{p} - \frac{1}{q} = \frac{-2}{R}$$

Or

However, both q and R are negative so one should write

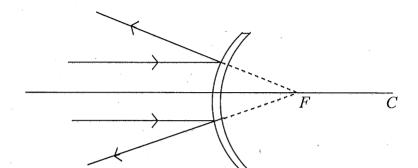
$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R} \tag{3}$$

and supplement

$$m = \frac{-q}{p} \tag{4}$$

SPECIAL CASES

I $p \to \infty$, parallel light falls on mirror $q = \frac{R}{2} = f$ but f is negative, f is behind mirror on dark side



A parallel beam of light incident on a convex mirror, on reflection appears to start from F and becomes divergent.

Hence

CONVEX MIRROR ⇒ DIVERGENT MIRROR

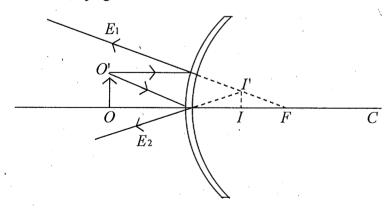
II Since q is negative all images are VIRTUAL and upright

Also
$$\frac{1}{p} - \frac{1}{q} = \frac{-2}{R}$$
Or
$$\frac{1}{p} = \frac{1}{q} + \frac{2}{R}$$

 $\left[\frac{1}{q} > \frac{1}{p}\right]$

So q is always less than p, and always less than f.

All images are virtual, upright and reduced.



Right rear view mirror of automobiles!!