DEVICES – AC CIRCUITS

Battery Source of Coulomb
$$E$$
-field $+$
Output is emf : ε

Capacitor: Container for
$$E$$
-field $C = \frac{Q}{V}$

Potential Energy $U_E = \frac{Q^2}{2C}$
 $\eta_E = \text{Energy stored per } m^3 = \frac{1}{2} \in_0 E^2$
 $\epsilon_0 = 9 \times 10^{-12} F/m$

Resistor: Represents that it costs energy to transport charge through a conductor

Power loss
$$P = I^2 R = \frac{V^2}{R}$$

Inductor: A time varying current causes a Non-Coulomb E-field, or an induced emf, $L = \frac{-\varepsilon}{\left(\frac{\Delta i}{\Delta t}\right)}$

Container for
$$B$$
-field, Potential Energy $U_B = \frac{1}{2}Li^2$

$$\eta_B = \text{Energy stored per } m^3 = \frac{B^2}{2\mu_0}$$

A.C. Generator: Wire loops of area A rotated at ω rad/s in a B-field. Generates non-coulomb E-field in the loops, produces an emf: $\varepsilon = \omega NBA \ Sin(\omega t)$

Where N=# of turns in the loop. Hence ac-generator

$$\Phi_{B} = NBA\cos(\Theta)$$
Where Θ is angle between \hat{n} and \underline{B}
Rotation by $\omega \ rads/\varepsilon \ r$ makes $\Theta = \omega t$, $\Phi_{B} = NBA\cos(\Theta)$

$$\operatorname{So} \frac{\Delta \Phi_{B}}{\Delta t} = -NBA\omega\sin\omega t, \ \varepsilon = \frac{-\Delta \Phi_{B}}{\Delta t} = \omega NBA\sin\omega t$$

CIRCUITS

I. RC with battery, close switch at t=0, current flows immediately, potential across C appears

later $\varepsilon = \frac{q}{C} + iR$

$$\tau = RC$$

N.B. Current first, voltage later.

II. RL With Battery

Close switch at t=0, v_L immediately jumps to $|\varepsilon|$

Current builds slowly.

$$\varepsilon = L \frac{\Delta i}{\Delta t} + iR$$

$$\tau = \frac{L}{R}$$

Note: Voltage First, Current Later.

III. <u>LC-Circuit</u>: Undamped Oscillator

First charge C to Q_0 . Close switch at t=0. Energy stored in

capacitor
$$U_B = \frac{Q_0^2}{2C}$$

Charge begins to flow. Total Energy = (Energy in E-field) + (Energy in E-field) = (Energy in E) + (Energy in E)

$$\frac{Q_0^2}{2C} = \frac{q^2}{2C} + \frac{1}{2}L\left(\frac{\Delta q}{\Delta t}\right)^2$$

Recognize, similarity to spring-mass oscillator

$$\frac{1}{2}kA^2 = \frac{1}{2}kx^2 + \frac{1}{2}m\left(\frac{\Delta x}{\Delta t}\right)^2$$

$$x \rightarrow q$$

$$x = A \cos \omega_0 t$$

$$m \rightarrow L$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$k \rightarrow \frac{1}{C}$$

$$q = Q_0 Cos \omega_0 t$$

Now

$$q = Q_0 \cos \omega_0 t$$
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

E -field collapses giving rise to B -field and vice versa.

5

IV. LCR-CIRCUIT: DAMPED OSCILLATOR,

At t=0, charge C to Q_0 close switch. Now driving i through R costs i^2R per second.

So $\left(\frac{q^2}{2C} + \frac{1}{2}Li^2\right)$ IS NOT CONSTANT

$$\frac{\Delta \left(\frac{q^2}{2C} + \frac{1}{2}Li^2\right)}{\Delta t} = -i^2R$$

-ive sign on right because energy is being lost (R is getting warmer).

Now $q = Q_0 e^{-Rt/2L} Cos \omega t$

$$\omega = \omega_0 \left[1 - \frac{1}{\left(2\omega_0 \tau \right)^2} \right]^{\frac{1}{2}}$$

$$\tau = \frac{L}{R}$$

$$\omega_0 \tau = Quality \ factor = Q_e$$

Note 1: smaller R, larger the duration for which the oscillations persist.

Note 2: R plays role of friction; as always energy lost goes to raise temperature. Electrical Equivalent of Heat.

CIRCUITS: AC

I. Resistor and Generator

$$V_R = IR$$

so

If
$$\varepsilon = \varepsilon_0 \sin \omega t$$

$$i = \frac{\varepsilon_0}{R} Sin \, \omega t$$

Current and voltage are in phase.

Power

$$P(t) = iv$$

$$= \frac{\varepsilon_0}{R} Sin^2 \omega t$$

averaged over a cycle. $\langle P \rangle = \frac{{\varepsilon_0}^2}{2\,R} = \frac{i_0 \varepsilon_0}{2} = \frac{i_0^2 R}{2}$ and the power loss is as if R was connected to a battery whose $\varepsilon = \frac{{\varepsilon_0}}{\sqrt{2}}$. In this sense one talks of $\frac{{\varepsilon_0}}{\sqrt{2}}$ and $\frac{i_0}{\sqrt{2}}$ as root-mean-square or r.m.s. voltage and current.

II. Generator and Capacitor

now q = Cv

so charge and voltage in phase.

$$v = \varepsilon_0 \ Sin \omega t$$

$$q = \varepsilon_0 Sin \omega t$$

$$i = \frac{\Delta q}{\Delta t} = + \varepsilon_0 C \omega \ Cos \omega t$$

i and *v* are not in phase *i* leads *v* by $\frac{\pi}{2}$

 $\frac{1}{\omega C}$ has dimensions of R and we define capacitive reactance

$$X_c = \frac{1}{\omega C}$$

$$i = \frac{\varepsilon_0}{X_a} \cos \omega t$$

Now
$$P(t) = \frac{{\varepsilon_0}^2}{X_C} Sin\omega t Cos\omega t$$

Average
$$\langle P \rangle = 0$$

No power loss on average.

III.

Now voltage in phase with slope of *i* vs *t* curve.

If
$$i = i_0 Sin \omega t$$

 $\varepsilon - \frac{L\Delta i}{\Delta t} = 0$

$$v_L = \frac{L\Delta i}{\Delta t}$$

 $v_L = i_0 \omega L \cos \omega t$ and now voltage leads current by $\frac{\pi}{2}$

$$X_L = \omega L$$

And again $\langle P \rangle = 0$

IV. Generator with all three.

To work out behavior of L-C-R circuit we have to keep track of the relative phases in R, C, and L.

We introduce the concept of a Phasor. We have a series loop so current has to be same at all points. We begin with the current and build the voltage vector.

Take $i = i_0 Sin \omega t$ and represent it by current Phasor: vector of magnitude i_0 rotating at angular velocity ω , i.e.

Concentrate on t=0

$$\frac{i \text{ vector}}{i_0} \qquad \frac{v_R \text{ vector (in phase)}}{i_0 R} \qquad \frac{v_c \text{ vector}}{i_0 R} \left(\frac{\pi}{2} \text{ behind}\right)$$

$$i = 0 \qquad v_R = 0 \qquad v_c \text{ max}^m - \text{ ive}$$

$$\frac{v_L \text{ vector}}{\uparrow} \left(\frac{\pi}{2} \text{ ahead} \right)$$

$$i_0 \omega L$$

 $v_L \max + ive$

Total voltage vector

$$\varepsilon_0 = v_0 = i_0 \left[R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2 \right]^{\frac{1}{2}}$$

$$\tan \Phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$i = i_0 Sin \omega t$$

 $v = \varepsilon_0 Sin(\omega t + \emptyset)$

Power in Circuit

$$P = iv = i_0 \varepsilon_0 Sin \omega t Sin(\omega t + \emptyset)$$

$$= i_0^* \varepsilon_0 \left[Sin^2 \omega t Cos \emptyset + Sin \omega t Cos \omega t Sin \emptyset \right]$$

$$\langle P \rangle = \frac{i_0 \varepsilon_0}{2} Cos \emptyset$$

This is the concept of Power factor $Cos\emptyset$ Next, Define Impedance

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{wC}\right)^2}$$
then $i_0 = \frac{\varepsilon_0}{Z} \& Cos \varnothing = \frac{R}{Z}$

$$so < P >= \frac{{\varepsilon_0}^2}{2Z} cos \Theta = \frac{{\varepsilon_0}^2}{2R} cos^2 \Theta$$

RESONANCE If generator frequency can be varied
$$i_0 = \frac{\varepsilon_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

Gives $i_0 \to 0$ when $\omega \to 0$ b/c $\frac{1}{\omega C} \to \infty$ [capacitor cuts off i_0] $i_0 \to 0 \qquad \text{when } \omega \to \infty \text{ b/c } \omega L \to \infty \text{ [Inductor cuts off } i_0\text{]}$ $i_0 \quad \text{is max}^m \text{ when } \omega L = \frac{1}{\omega C}$

This is the phenomenon of Resonance

The phase difference \varnothing is also a function of frequency

[ν and i in phase R gets max m power hence "RESONANCE"]

Note: Resonance occurs when Generator frequency ω is equal to natural frequency of LC

Circuit $\omega_0 = \frac{1}{\sqrt{LC}}$