Ampere's Law and its Applications

Consider the situation shown schematically in the diagram. Currents I_1, I_2, I_3, I_4, I_5 are flowing out of (\cdot) or (+) into the paper. The corresponding B-fields swirl around their sources as shown. The main point is that the B-field lines circulate around the currents. Choose a closed loop (L). Start at A, measure B, choose a small step Δl along the loop. Calculate Dot product (component of B along Δl multiplied by Δl)

$$\underline{B} \bullet \underline{\Delta l} = B\Delta l \cos(\underline{B}, \underline{\Delta l})$$
If $\underline{B} \perp \underline{\Delta l}$, $\underline{B} \bullet \underline{\Delta l} = 0$.

Repeat this calculation at every step as shown. $B_1 \bullet \Delta l_1 + B_2 \bullet \Delta l_2 + B_3 \bullet \Delta l_3 + \dots$ Write out the sum

$$\Sigma_c \xrightarrow{B \cdot \Delta l};$$
c: closed loop.

This sum is called the circulation of B around a closed loop and Ampere's Law says that it is determined solely by currents threading through the surface on which the loop is drawn & only currents within the loop contribute, i.e. exclude I_5 . The mathematical Equation is:

$$\Sigma_c \xrightarrow{B} \Delta l = \mu_0 \Sigma I_i, \mu_0 = 4\pi \times 10^{-7} \frac{T - m}{A}$$

In words, circulation of B around a closed loop is proportional to the algebraic sum of the currents threading the loop surface on which the loop is drawn.

Note: As in the case of Gauss' Law, Ampere's Law gives circulation but not \underline{B} . To get \underline{B} you need high symmetry!

Applications

1.) Single Current

Single wire with current I, there is cylindrical symmetry so B can be a function of r only & must encircle I. [B and ΔI are parallel to one another.]

Appropriate loop is circle of radius r centered on the wire

Hence,

$$\sum_{c} \underline{B} \bullet \underline{\Delta l} = B \cdot 2\pi r = \mu_0 I$$

so,
$$B = \frac{\mu_0 I}{2\pi r} \hat{\varnothing}$$

as claimed previously

2.) Next, we begin by showing that if the current is outside the loop it contributes nothing to the circulation. Choose LMNOPQ with I at the center of the circles of radii r_1 , and r_2

Start at L and go around the closed "loop".

$$L \to M \to N \to O \to P \to Q \to L$$

First note that $\underline{\underline{B}}(r_1) = \frac{\mu_0 I}{2\pi r_1} \hat{\Phi}$

And $\underline{\underline{B}}(r_2) = \frac{\mu_0 I}{2\pi r_2} \hat{\Phi}$

$$\Sigma_{C} \underline{B} \bullet \underline{\Delta l} = \frac{\mu_{0} I}{2\pi r_{1}} 2\pi r_{1} \cos 180^{\circ} + 0 + \frac{\mu_{0} I}{2\pi r_{2}} 2\pi r_{2} \cos 0 + 0 = 0$$

$$L \to N \quad N \to O \quad Q \to Q \quad Q \to L$$

For $N \to O$ and $Q \to L$, $\underline{B} \perp \underline{\Delta l}$ hence $\underline{B} \bullet \underline{\Delta l} = 0$.

3.)

At y=0 there is a Current sheet of thickness t carrying current density $J=-J\hat{z}$. Looking it endon we see sources of B as

and we see that y-components of B cancel out. $B || \hat{x}$ survives. Let us take loop of width l and height h.

$$\Sigma_{c} \xrightarrow{B} \Delta l = Bl + 0 + Bl + 0$$

$$= 2Bl$$

$$= \mu_{0}Jtl$$

so,

$$B = \frac{\mu_0 Jt}{2} \& B = \frac{\mu_0 Jt}{2} \hat{x} \qquad y > 0$$

$$= \frac{-\mu_0 Jt}{2} \hat{x} \qquad y > 0$$

That is, B-field will jump by $\mu_0 Jt$ on crossing the current sheet from y<0 to y>0.

For >R, entire I contributes $B = \frac{\mu_0 I}{2\pi r} \hat{\varnothing}$

6.) Solenoid: Tightly wound, small radius, length much larger than radius:

N turns, L long $n = \frac{N}{L} = \#$ of turns per meter.

Look at two neighboring turns

r-component cancels B_y inside survives.

Long-narrow solenoid. [\underline{B} field lines must come out of the top, loop around and enter at bottom with no breaks or bends allowed.]

 $B \approx 0$ just outside.

Take loop as shown
$$Bl = \mu_0 nIl$$

 $B = \mu_0 nI$

For case shown $B = \mu_0 nI\hat{y}$

4.) <u>Hollow Cylindrical Conductor</u>- Radius R, carries uniform current. We want $\stackrel{B}{\rightarrow}$ at a distance r from its axis. Since there is a cylindrical symmetry we should use circles centered on the axis for our closed loop. For r < R, use loop 1.

 $B \cdot 2\pi r = 0$. No Current threads through loop 1.

for r > R, $B \cdot 2\pi r = \mu_0 I$, the entire current threads loop 2.

so,
$$B = \frac{\mu_0 I}{2\pi r} \hat{\varnothing}$$

Note: if cylinder has wall thickness t: $I=J\cdot 2\pi Rt$ and field at surface would be $\mu_0 Jt$. Again field would jump by $\mu_0 Jt$ on crossing a current sheet.

5.) SOLID CYLINDRICAL CONDUCTOR – with uniform current

Define
$$J = \frac{I}{\pi R^2}$$

Now for r < R $I = J\pi r^2$

$$B \cdot 2\pi r = \mu_0 J \pi r^2$$

$$B = \frac{\mu_0 J r}{2} \hat{\varnothing} \qquad r < R$$