SOUND-DOPPLER EFFECT

<u>Definition</u>: If either the detector (D) or the source (S) of a wave moves along the line joining them, the perceived frequency is not equal to the emitted frequency.

Consider: D and S and sound waves in air

Source and Detector both at rest

S emits wave of frequency f

D perceives wave of frequency f

That is, f undulations pass by D every second and wave goes past D by the amount $V_s = \sqrt{\frac{\gamma P_0}{\rho_0}}$ every second.

Case I: D Moves Toward

D Moves toward S at V_D m/sec.

Now D will pick up f' undulations per second which lie in the distance $(V_S + V_D)$

$$f \quad \alpha \quad V_s$$

$$f' = \alpha = (V_S + V_D)$$

 $\alpha =$ proportional to

So

$$\frac{f'}{f} = \frac{V_S + V_D}{V_S}$$
 Toward

Case II: D Moves Away

If D moves away from S by V_D meters/sec all the undulations lying within V_D are no longer counted by it. Hence

$$\frac{f'}{f} = \frac{V_S - V_D}{V_S}$$
 Away

So difference between perceived frequency f' and emitted frequency f is essentially a matter of "counting" number of "waves" passing by D every second.

To summarize, when D moves

$$\frac{f'}{f} = \left(1 \pm \frac{V_D}{V_S}\right) + Toward - Away$$

Case III: S-Moves

Note: Speed of wave is controlled by air, if air is stationary speed is

$$V_{S} = \sqrt{\frac{\gamma P_{0}}{\rho_{0}}}$$

even if source moves.

S-Stationary:

Wave leaving S at t=0 reaches V_S away in 1 sec. All the waves fit within V_S . Hence wavelength

$$\lambda \alpha V_s$$

If source moves toward D by amount V_{s_0} in one sec.

The wave is now "squeezed" into the distance $(V_s - V_{s0})$ So'

$$\lambda' \quad \alpha \quad (V_S - V_{S0})$$

Hence

$$\frac{\lambda'}{\lambda} = \frac{V_S - V_{S0}}{V_S}$$

But

$$\lambda' f' = \lambda f = V_S$$

So perceived frequency

$$\frac{f'}{f} = \frac{\lambda}{\lambda'} = \frac{1}{1 - \frac{V_{S_0}}{V_S}}$$
 Toward

If source moves away from D wave gets stretched to occupy ($V_S + V_{S_0}$)

$$\frac{\lambda'}{\lambda} = \frac{V_S + V_{S0}}{V_S}$$

$$\frac{f'}{f} = \frac{1}{1 + \frac{V_{S0}}{V_S}}$$
Away

To summarize, if S moves, perceived frequency is given by

$$\frac{f'}{f} = \frac{1}{1 \pm \frac{V_{S_0}}{V_S}} - Toward + Away$$