MECHANICAL WAVES (TRAVELLING)

We begin our discussion of the wave phenomenon by considering waves in matter. The simplest definition of a wave is to call it a traveling disturbance (or equivalently, deviation from equilibrium). For instance, if you drop a stone on the surface of an undisturbed body of water you can watch the "disturbance" traveling radially out of the "point" of contact.

Formally, we can "construct" a wave in several steps. For simplicity, we take a wave traveling along x-axis.

Step 1. We need a disturbance D.

Step 2. D must be a function of x.

Step 3. D must also be a function of t.

Step 4. If x and t appear in the function in the combinations $(x \mp vt)$ the disturbance D cannot be stationary. It must travel along x with speed v.

Further,

(x-vt) implies
$$v = v \hat{x} [travel\ in + ive\ x - direction]$$

$$(x+vt)$$
 implies $v = -v \hat{x}[travel\ in-ive\ x-direction]$

EXERCIZE: Put $D = A(x-t)^2$ and show that "parabola" travels.

Periodic Waves

The simplest wave is when (x-vt) appears in a sin or cos function. D = sin (x-vt) But this equation is not justified. First, since D is a disturbance it must have dimensions so we need

$$D = A Sin(x - vt)$$

Where A has the dimensions of D. Next, argument of Sin cannot have dimensions, so we need

$$D = A \sin \frac{(x - vt)}{\lambda}$$

Where λ is a length. Since $\frac{v}{\lambda}$ has dimension of (1/Time), put $\frac{v}{\lambda} = \frac{1}{T}$

NOTE:

Periodic Wave

$$D = A \sin\left(\frac{2\Pi x}{\lambda} - \frac{2\Pi t}{T}\right)$$

What is λ ? Plot D as a function of x at t = 0.

The "wave" function repeats every λ meters so

$$\lambda$$
 = wavelength

As before, T is the period, Plot D at x = 0, D repeats every T seconds.

How far will travel in time $\frac{T}{4}$

$$t = \frac{T}{4} \qquad D = A \sin\left(\frac{2\Pi x}{\lambda} - \frac{\Pi}{2}\right)$$

Note: P has travelled to the right by $\frac{\lambda}{4}$ meters so

Speed =
$$\frac{\frac{\lambda}{4}}{\frac{T}{4}} = \frac{\lambda}{T}$$

Velocity

$$\underline{V} = \frac{\lambda}{T}\,\hat{x} = \lambda f\hat{x}$$

This makes sense because λ is distance moved in one period and the frequency f is the number of periods in 1sec, so distance travelled in 1sec is λf .

EXERCISE: Take $D = A \sin\left(\frac{2\Pi x}{\lambda}, \frac{2\Pi t}{T}\right)$ and convince yourself that in time $\frac{T}{4}$ D moves TO THE LEFT by $\frac{\lambda}{4}$ so velocity

$$V = -\lambda f \hat{x}$$

Note

Two kinds of period waves:

If $\underline{A} \parallel \hat{x}$ Longitudinal

If $\underline{A} \perp \hat{x}$ Transverse

Longitudinal: Variation of D along direction of propagation

<u>Transverse</u>: Variation of D perpendicular to direction of propagation.

Next, introduce a phase angle \varnothing and we get $D = A Sin \left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T} + \varnothing \right)$ as the most general periodic wave. Note that 2π has been put in, as we know repeat angle for Sin. If you put $\varnothing = \pi$ you recover the Equation in some books.

$$D = A Sin \left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda} \right)$$

As shown

 λ = Repeat Distance= wavelength

T = period,
$$\frac{1}{T} = f$$
 (frequency)

And $v = \lambda f$

Next, define
$$k = \frac{2\pi}{\lambda}$$
 (wave vector)

$$\omega = 2\pi f$$
 (angular frequency)

$$\omega = vk$$

And we can write $D = A Sin(kx - wt + \emptyset)$ for any periodic wave traveling a long +ive x-axis with velocity $v = \frac{\omega}{k} \hat{x}$

Similarly, $D = A Sin(kx + wt + \emptyset)$ is any periodic wave along –ive x-axis with

$$\underset{\rightarrow}{v} = -\frac{w}{k}\hat{x}$$