FORCE BETWEEN TWO POINT CHARGES

$$F_E = k_e \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$k_e = 9x10^9 \, \frac{N - m^2}{C^2}$$

 Q_1, Q_2 same sign

 $F_{\!\scriptscriptstyle E} \parallel + \hat{r}$

REPULSIVE (BOTH FORCES QUTWARD)

$$Q_1, Q_2$$
 have opposite signs.
 $F_E \parallel -\hat{r}$ (BOTH FORCES INWARD)

ATTRACTIVE

FORCE BETWEEN TWO POINT MASSES

$$F_{G} = -\frac{GM_{1}M_{2}}{r^{2}}\hat{r}$$

$$G = 6.7x10^{-11}\frac{N - m^{2}}{(kg)^{2}}$$

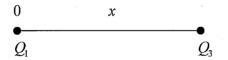
 F_G ALWAYS ATTRACTIVE

 $F_G \parallel -\hat{r}$ (BOTH FORCES INWARD)

NOTICE THAT THE FORCES OCCUR AS ACTION-REACTION PAIRS IN EVERY CASE.

Many Point Charges Force on Q

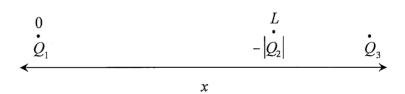
$$F_{i} = k_{e} \frac{\sum_{j \neq i} Q_{i} Q_{j}}{j \neq i} \hat{r}_{ij}^{2} \hat{r}_{ij}$$

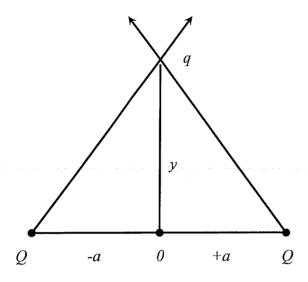

Note: Right side involves addition of vectors.

SPECIAL CASES

1. Q_1 at x=0, Q_2 at x=L. Where to locate Q_3 so F_3 force on Q_3 is zero.

 Q_3 must be on the line joining Q_1 and Q_2 .


$$x = \frac{L}{1 + \sqrt{\frac{Q_2}{Q_1}}}$$


L Q_2

2. Q_1 at x=0, $-|Q_2|$ at x=L. F_3 will be zero if

$$x = \frac{L}{\sqrt{\frac{Q_1}{Q_2} - 1}} \quad \text{when } Q_1 > |Q_2|$$

3. Q at x=-a, Q at x=+a. What is force on q at (0, y)

$$F_{E}(y) = \frac{2k_{e}Qy}{(y^{2} + a^{2})\frac{3}{2}}\hat{y}$$

What if we have -|q| at(0, y)

$$\frac{-2k_e|q|Qy\,\hat{y}}{(y^2+a^2)\frac{3}{2}}$$

(y'+a') 1/2 Let us make y Ka. 2 - 191

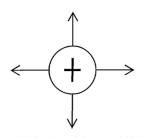
In this case, force is proportional to displacement y and opposite to it so -|q| will show Linear Harmonic oscillations.

<u>QUESTION:</u> Why is there a force between two charges(masses) when they are far apart from one another.

To answer this we develop the concept of a FIELD

$$COULOMB \xrightarrow{E-FIELD}$$

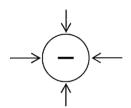
 $GRAVITATIONAL(G_F)$ FIELD

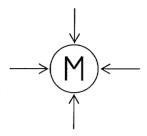

If there is a charge Q sitting at x=0, the space around it is <u>not</u> empty. Q creates a coulomb E field which permeates all of space. If you place a test charge q in this E field, it experiences a force $F_E = q E$

If there is a mass M sitting at x=0, the space around it is not empty. M creates a gravitational (G_F) field which permeates all of space. If you place a test mass m in the G field it experiences a force

$$F_G = mG_F$$

1. Single +ive charge Q at r=0.

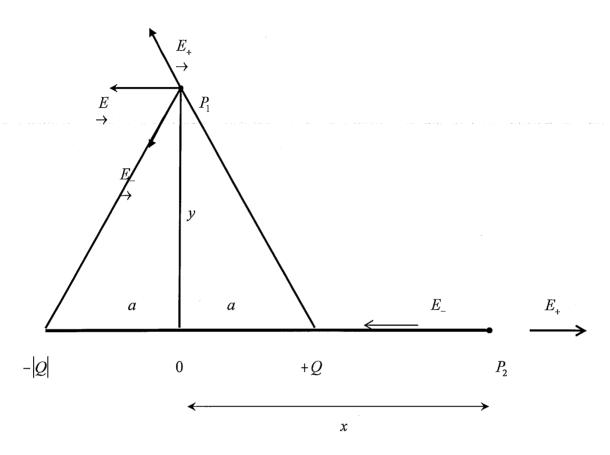

$$E = \frac{k_e Q}{r^2} \hat{r}$$


Acts like a "source" of an $\stackrel{E}{\rightarrow}$ field which points radially outward

2. Single – ive charge at r=0.

$$E = -k_e \frac{|Q|}{r^2} \hat{r}$$

Acts like a "sink" of $\stackrel{E}{\rightarrow}$ field which pts. Radically inward.



$$G_F = -\frac{GM}{r^2}\hat{r}$$

ALWAYS INWARD RADIALLY.

3.
$$E \text{ field of Dipole: } -|Q| \text{ at } x=-a$$

$$+Q at x = a$$

at
$$P_1 = (0, y)$$
 $E(y) = -\frac{k_e 2aQ}{(y^2 + a^2)^{3/2}} \hat{x}$

at
$$P_2 = (x,0)$$
 $E(x) = -\frac{k_e 4aQx}{(x^2 - a^2)^2}$

Next, define dipole moment $p = 2aQ\hat{x}$

$$E(y) = \frac{-k_e p}{y^3}$$

$$E(x) = \frac{2k_e p}{x^3}$$

$$E(x) = \frac{2k_e p}{x^3}$$

When x,y >> a that is far away from dipole