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SPEED OF TRANSVERSE PULSE ON A STRETCHED STRIN G, PERIODIC WAVE,
ENERGY TRANSPORT

We now know that we can describe a transverse periodic wave of wavelength 1 and a
frequency f by the equation y = 4 Sin(kx - at) with k= 27, wand @ = 27f Whﬂe Ai x with

o = vk[sameas v = Af]
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‘ To generate a “pulse” we need to sum up many, many periodic waves with different
wavelengths, frequencies and amplitudes. Experimentally, all we need is to take a string of
length L and mass m tie its one end, pass the other over a pulley and hang a mass M.
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We define linear density u = —lg—

The string will develop tension F'=(Mg) everywhere. We will make the string very long, so we
- do not need to worry about what happens at the ends as of yet. If we “tweak™ it, we can observe

a pulse such as shown below traveling along it.
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We will keep the amplitude small. Let us concentrate on a small piece of length Ax and ask
what happens when the pulse comes along. As is clear Ax is lying there minding its own
business when the pulse arrives and Ax must travel on a curved path to participate in the passage
of the pulse. Indeed we can imagine that Ax is carried around a circle of radius R at speed v.

Ax

Ax v’ ‘
Since Ax has a mass of pAx iffeeds a force F =- %tﬁ to go around the circle. The question
-

is, what force is available to make this happen. Let us make Ax big and draw forces:
Immediately, we see that the net force A ‘

Along x (parallel to string) is zero. But the
y-components due to the tension add

F,
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So available force at Pis F, =~ 2F, )

= 2FSind%
=-2F0p Since << 1.
Ax Ax
=-2F_—7 0=
2R” 2R
Ax
= =9
R’ ,
, 7.2 , . ,
While at P the needed F,is — 2 y. It F, = F@Ax can happily participate in the pulse. That
FA Axv? F
is, we must require Tx - £ ;v . Sovs= \/,L:t is the speed of a small amplitude pulse in a

string which has a tension F in it and a linear density (mass per unit length) of u kg/m. It
seems reasonable that for a periodic wave on our string we can write

y = ASin(kx - wt)

w=vk
F
y=_|—
)7

Provided that we keep 4 << A so all angles are small [we needed & << 1 in our proof].
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ENERGY TRANSPORT BY SINE WAVE ON STRING

Every point on the string has a y coordinate which varies as y = A Sinwt . This is like linear

harmonic motion so every point has a transverse velocity
Lif yw=Aw Cosot
. . o 1
A unit length of string will therefore have a kinetic energy K = > — u A*w* cos” wt

¥
Whose maximum value (which is equal to total energy, KIN +POTL) will be K, = % p Ao’

1
wave travels by v m/s so energy transport per second 7= -4 A’w"y

1 _
Since F'= uv* we can also write 7= §A2 2%
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