NON-COULOMB E FIELD

(INDUCTION)

We begin by considering a uniform B-field represented by a set of parallel lines. Next, imagine an area ΔA whose normal

is along \hat{n} . Then, as in the case of E, we define flux of B through ΔA to be

$$\Delta \Phi_B = B \bullet \Delta A = B \Delta A Cos(B, \hat{n})$$

As before, flux is maximum when $B \parallel \hat{n} \pmod{\pm}$ and zero if $B \perp \hat{n} \pmod{B}$ lines lie in plane of ΔA).

<u>Faraday's</u> discovery was that if Φ_B varies with time, that is, $\frac{\Delta \Phi_B}{\Delta t} \neq 0$, there will be an *emf* ε induced in every closed loop surrounding the region where $\Delta \Phi_B$ is changing. For example, if in the picture B varies with the time, or angle of B with \hat{n}

varies with time, $\frac{\Delta \Phi_B}{\Delta t} \neq 0$, and an *emf* will appear in the closed loop, represented by the dotted line, surrounding ΔA . We know that if there is an *emf* in a circuit (closed loop) there must be an E-field present at every point of the circuit such that $\varepsilon = \sum_c E \cdot \Delta l$

Where the sum Is over the closed loop and Δl represents displacement along the loop.

Next, we add Lenz's principle to Faraday's discovery to write

$$\Sigma_{c} \stackrel{E}{\underset{\rightarrow}{\longrightarrow}} \Delta l = -\frac{\Delta \Phi_{B}}{\Delta t}$$

The minus sign on the right is crucial, it implies that the *emf* or equivalently E-field, is such that it opposes the change in the flux of E which generates the *emf*.

Another remarkable point to note is that the E-field generated by a time varying Φ_B is represented by lines which close on themselves – there is no beginning and no end. This is totally different from the E-field implied by Coulomb's law: $E = \frac{q}{4\pi\varepsilon_0 r^2}\hat{r}$ which "started" at +ive charges and "ended" at –ive charges.

We call the E-field generated by the time varying flux of B a NON-COULOMB E-FIELD:

$$\Sigma_{c} E_{NC} \cdot \Delta I = -\frac{\Delta \Phi_{B}}{\Delta L}.$$

Notice that for $E_{N\!C}$ Gauss' law will always give

$$\Sigma_c E_{NC} \cdot \Delta \Delta \equiv 0$$
.

Total flux of $E_{\it NC}$ through a closed surface is always equal to zero.

Note: A charge q placed in E_{NC} experiences a force

$$F_E = q E_{NC}$$

exactly as for a Coulomb E-field.

APPLICATIONS

Calculate the E_{NC} for a solenoid at a distance r from its axis when the flux of B is varied by

time variation of the current in the solenoid. That is, $\frac{\Delta i}{\Delta t} \neq 0 \Rightarrow \frac{\Delta B}{\Delta t} \neq 0 \Rightarrow \frac{\Delta \Phi_B}{\Delta t} = 0$. Consider a solenoid wound on a tube of radius a. If there are n turns per meter and the current flow is as shown, there is a uniform B inside it

$$B = \mu_0 ni \hat{y}$$
and
$$\frac{\Delta B}{\Delta t} = \mu_0 n \frac{\Delta i}{\Delta t} \hat{y}$$

The problem has cylindrical symmetry about axis of solenoid, E_{NC} at r is a function of r only and must be azimuthal. Let i increase with time. Then flux of B along $+\hat{y}$ is increasing with time. Take a circular loop. As shown direction of E_{NC} must be clockwise (as viewed from above) to oppose increase of Φ_B .

Next,

If
$$r < a$$
 $E_{NC} 2\pi r = -\mu_0 n\pi r^2 \frac{\Delta i}{\Delta t}$ [LOOP INSIDE SOLENOID]
If $r > a$ $E_{NC} 2\pi r = -\mu_0 n\pi a^2 \frac{\Delta i}{\Delta t}$ [LOOP OUTSIDE SOLENOID]

Magnitude

