Superposition and Standing Waves

- Superposition
- Constructive and destructive interference
- Standing waves
- Harmonies and tone
- Interference from two sources
- Beats

Principle of Superposition

When two or more waves are simultaneously present at a single point in space, the displacement of the medium at that point is the sum of the displacement due to each individual wave.

Constructive and Destructive Interference

•Constructive – amplitude of the 2 waves is of the same sign

•Destructive – amplitude of the 2 waves is of the opposite sign Superposition of plane waves in opposite direction with β=0.00 and p1/p2=0.5

@ Ralph Muehleisen, 2005

Standing Wave

Two waves traveling in the opposite directions with the same amplitude

The two waves interfere and create a standing wave Superposition of plane waves in opposite direction with β =0.00 and p1/p2=1.0

@ Ralph Muehleisen, 2005

Nodes and Antinodes

- Nodes displacement does not change
- Antinodes displacement changes with maximum amplitude

Nodes and Antinodes – longitudinal waves

Nodes and antinodes can be defined as pressure or velocity. Text book defines as pressure – other sources define as velocity of particles in the medium

Superposition of plane waves in opposite direction with β=0.00 and p1/p2=1.0

@ Ralph Muehleisen, 2005

Reflections

When a wave meets a boundary it is reflected.

A hard boundary will invert the reflection, a soft boundary will keep the original sense

Animation courtesy of Dr. Dan Russell, Kettering University http://paws.kettering.edu/~drussell

7

Reflection at a discontinuity

- At a discontinuity in the medium – e.g. passing from higher to lower density, we get partial transmission and partial reflection.
- From low to high density we also get an inversion at the reflection

Modes

- Certain wavelengths will fit on a fixed length of medium.
- These are called modes
- The number of antinodes gives us the mode number

Modes

The wavelengths of the modes for a medium length L, can be described by

2Lm *m* = 1,2,3,4,...

Modes

The frequencies of the modes for a medium length L, can be described by

Special Modes

When m=1 we get the lowest frequency, called the fundamental frequency

$$f_1 = \frac{v}{2L}$$
$$f_m = mf_1$$
$$m = 1, 2, 3, 4..$$

Applications

 Stringed instruments – we know the velocity of the wave in the string is:

 To keep the tension on stringed instruments the same, the strings linear density, µ is changed

Lasers

The laser has a full reflector and partial reflector. The light produced in the cavity is leaked at one end by a mirror that is only 99% efficient.

Standing sound waves in pipes

- A closed end pipe will reflect the wave
- An open end pipe will partially transmit and partially reflect the sound wave – it is a discontinuity in the medium

@ Ralph Muehleisen, 2005

Sound waves in a pipe

- The open end of a pipe will be a pressure node – the pressure will constant
- A closed end of the pipe will be a pressure antinode – the pressure fluctuates from minimum to maximum value

(b) Half a cycle later

The shift between compression and rarefaction means a motion of molecules along the tube.

Sound wave modes in a pipe

Representation of longitudinal waves in open-open, closed-closed and open-closed pipes

17

Standing waves in an open-closed pipe

We can get one quarter wavelengths in an open-closed pipe:

$$\lambda_m = \frac{4L}{m}$$
$$f_m = \frac{mv}{4L}$$
$$m = 1,3,5,7.$$

Physics of the human ear

Sound travels into the ear, vibrates the ear drum, which amplifies the sound, and sends it down the cochlea

Physics of the human ear

The sound resonates hair cells in the cochlea (0.5nm) to fire neurons

Copyright © 2007, Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Shape of sound

A guitar string will have many higher frequencies, or harmonics. They add to the tone quality, or timbre.

Interference

Two wave sources operating at the same frequency will add (constructively and destructively) and lead to interference patterns.

Constructive interference

- Amplitudes will add when the waves are in phase
- This happens when the path length difference is a whole number of wavelengths.

$$\Delta d = m\lambda$$
$$m = 0, 1, 2, 3, \dots$$

Destructive interference

- Amplitudes will cancel when the waves are out of phase
- This happens when the path length difference is a half wavelength off.

$$\Delta d = \left(m + \frac{1}{2}\right)\lambda$$
$$m = 0, 1, 2, 3, \dots$$

These two waves are out of phase. The crests of one wave are aligned with the troughs of the other. Wave 2 Wave 1 What is the sound at this point? d_{2} Δp_{1} d. The two speakers The superposition are $\frac{1}{2}$ wavelength produces a wave apart. with zero amplitude.

Copyright © 2007, Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Destructive interference in head phones

- Active noise reduction is when the incoming sound is inverted and rebroadcast
- Commonly used on air flights.
- Selective frequency response.

Beats

- Consider two waves of slightly different frequency
- The amplitudes add and cancel and give rise to beats.

Beats

The time between the beats is dependent on the difference between the two frequencies

Beats

There are 2 new frequencies, the frequency of the oscillation, f_{osc} , and the beat frequency, f_{beat}

$$f_{osc} = \frac{1}{2} (f_1 + f_2)$$
$$f_{beat} = |f_1 - f_2|$$

Summary

- Superposition
- Constructive and destructive interference
- Standing waves
- Harmonies and tone
- Interference from two sources
- Beats

Homework problems

Chapter 16 Problems 41, 54, 56, 61, 62, 67