Phys 121 12/6/10

Surveys

- Campus evaluation (login at upper right)
 - https://www.CourseEvalUM.umd.edu (or from BlackBoard)
- In tutorial next week
 - Post-instruction concept survey (5 pts)
- On line
 - Post-instruction attitude survey (5 pts)
 http://perg-surveys.physics.umd.edu/MPEX2post.php

12/6/10 Physics 121 3

Foothold ideas: 1

- Temperature is a measure of how hot or cold something is. (We have a natural physical sense of hot and cold.)
- When two objects are left in contact for long enough they come to the same temperature.
- When two objects of the same material but different temperatures are put together they reach an average, weighted by the fraction of the total mass.
- The mechanism responsible for the above rule is that the same thermal energy is transferred from one object to the other: Q proportional to mΔT.

12/6/10	Physics 121	4
---------	-------------	---

Prof. E. F. Redish		1

Phys 121 12/6/10

Thermal Energy is NOT Temperature

- Even if the masses are the same, the temperature does not wind up halfway between.
- Each kind of material translates thermal energy into temperature in its own way.

$$m_1c_1\Delta T_1 = -m_2c_2\Delta T_2$$

Physics 121

12/6/10

6

7

Specific Heat and Heat Capacity

The amount of thermal energy needed to produce one degree of temperature change is an object is called its <u>heat capacity</u>.

$$Q = C\Delta T$$

 The amount of thermal energy per unit mass needed to produce one degree of temperature change in an object is called its specific heat.

C = mc

12/6/10

Physics 121

Scales and Units

- 1 cal = the amount of thermal energy needed to change the temperature of 1 gm of water by 1 degree C (from 14.5° to 15.5°) (by definition)
- 1 Cal = 1000 cal
- 1 Cal = 4184 J

12/6/10

Physics 121

8

Reinterpreting Our Results

■ When two objects at different temperature are put together, thermal energy flows from the hotter body to the colder body until their temperatures are the same. (0th Law)

$$\begin{split} Q &= m_i c_i \Delta T_i = m_i c_1 (T_f - T_i^i) \\ -Q &= m_2 c_2 \Delta T_2 = m_2 c_2 (T_f - T_2^i) \\ m_i c_1 (T_f - T_i^i) = -m_2 c_2 (T_f - T_2^i) \\ m_i c_1 (T_f - T_1) = m_2 c_2 (T_2 - T_f) \\ T_f &= \frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2} \\ T_f &= \left(\frac{m_i c_1}{m_i c_1 + m_2 c_2}\right) T_1 + \left(\frac{m_2 c_2}{m_i c_1 + m_2 c_1}\right) T_2 \end{split}$$

12/6/10

Physics 121

9

Foothold ideas: 2

- When two objects of <u>different</u> materials and different temperatures are put together they come to a common temperature, but it is not obtained by the simple rule.
- Each object translates thermal energy into temperature in its own way. This is specified by a density-like quantity, c, the specific heat.
- The heat capacity of an object is C = mc.
- When two objects of different material and different temperatures are put together they reach an average, weighted by the fraction of the total heat capacity.
- When heat is absorbed or emitted by an object $Q = \pm mc\Delta T$ Physics 121

 10

Real-World Intuition 1:

Reconsidered

- If we have a cup of hot water and a cup of cold water and we put them aside for a while, what will happen to them?

- If you touch the cloth part of your chair and the metal part, which feels warmer?

12/6/10

Physics 121

11

Phys 121 12/6/10

The Heat Flow Equation

$$\Delta T = Z\Phi$$

- We expect the flow to
 - Be less for a longer block (L)
 - Be more for a wider block (A)

$$Z = \rho \frac{L}{A}$$

 $\blacksquare \rho$ = thermal resistivity – a property of the kind of substance the block is made of

12/6/10 Physics 121 15

A	more	stand	ard	form
4.	more	Stant	uuu	TOTH

■ We have written the heat flow equation to have it match the HP equation. It is more standardly written this way:

Thermal conductance

■ The equation then becomes

$$\Delta T = Z\Phi = \frac{\rho L}{A} \Phi = \begin{pmatrix} L \\ k \end{pmatrix} \begin{pmatrix} \Phi \\ A \end{pmatrix}$$

$$\Delta T = R\phi$$
Physics 121 (R-value) 16

Some thermal conductances

Material	k (W/m-C)	Material	k (W/m-C)
Steel	12-45	Wood	0.4
Aluminum	200	Insulation	0.04
Copper	380	Air	0.025
12/6/10	Physi	cs 121	17