	Department of Physics	
	University of Maryland	
	College Park, Maryland	
PHYSICS 121		Prof. S. J. Gates
Fall 2002	Exam I Solutions	Oct. 4, 2002

Section I. Multiple Choice Questions

Each question in this section is worth eight (8) points. You should \underline{NOT} take more than two minutes per question. If you do, it is advisable to continue on to the next question!

- (1.) (a.) Since the kinematic equation for the ball is $v_f = -80 \frac{m}{s} + (-16 \frac{m}{s^2})t$, we see that as t increases the speed (given by $|v_f|$) increases.
- (2.) (d.) A scalar and a vector cannot be added.
- (3.) (b.) For an object thrown, the horizontal velocity never changes from the initial horizontal velocity. The initial horizontal velocity is just $16\cos(60^{\circ})\frac{m}{s} = 8\frac{m}{s}$.
- (4.) (c.) (2.46) (9.8 $\frac{m}{s^2}$) This follows from a result given in a lecture. The acceleration of gravity g on Earth's surface is equal to $g = 9.8 \frac{m}{s^2} = G \left[M_E / (R_E)^2 \right]$ but for Jupiter

$$g_J = G\left(\frac{M_J}{(R_J)^2}\right) = G\left(\frac{314.5M_E}{(11.31R_E)^2}\right)$$
$$= \left(\frac{314.5}{(11.31)^2}\right) G\left(\frac{M_E}{(R_E)^2}\right) = 2.46 g$$

(5.) (d.) All of the situations described in (a.), (b.) and (c.) can occur by making a choice of coordinates.

Section III. Analytical Questions

Problem (1.)

A bug is located at (1m, 2m) at t = 0s. The same bug is observed to be located at (2m, -3m)) at t = 3s. Finally it is observed to be located at (-3m, -1m) at t = 3.5s.

(a.) The average velocity between t = 0s and t = 3s is given by

$$\overline{v}_x = \left(\frac{2-1}{3-0}\right)\frac{m}{s} = 0.66\frac{m}{s} , \ \overline{v}_y = \left(\frac{-3-2}{3-0}\right)\frac{m}{s} = -1.66\frac{m}{s}$$

(b.) The average velocity between t = 3s and t = 3.5s, is given by

$$\overline{v}_x = \left(\frac{-3-2}{3.5-3}\right)\frac{m}{s} = 10\frac{m}{s} , \ \overline{v}_y = \left(\frac{-1+3}{3.5-3}\right)\frac{m}{s} = 4\frac{m}{s}$$

(c.) The average average acceleration between t = 3s and t = 3.5s may be defined by

$$\overline{a}_x = \left(\frac{10 - 0.66}{3.5 - 3}\right) \frac{m}{s^2} = 18.68 \frac{m}{s^2} , \quad \overline{a}_y = \left(\frac{4 + 1.66}{3.5 - 3}\right) \frac{m}{s^2} = 11.32 \frac{m}{s^2}$$

Problem (2.)

The kinematic position equations for cars #1 and cars #2 are given by

$$x_{f,1} = \frac{1}{2} (0.6) (9.8 \frac{m}{s^2}) t^2$$
, $x_{f,2} = 45 m + \frac{1}{2} (0.3) (9.8 \frac{m}{s^2}) t^2$

If there is a tie then

$$\frac{1}{2} (0.6) (9.8\frac{m}{s^2}) t^2 = 45 m + \frac{1}{2} (0.3) (9.8\frac{m}{s^2}) t^2 \rightarrow \frac{1}{2} (0.3) (9.8\frac{m}{s^2}) t^2 = 45 m \rightarrow \frac{3 (98)}{200} (\frac{m}{s^2}) t^2 = 45 m \rightarrow t = \left(\sqrt{\frac{3000}{98}}\right) s = 5.5 s$$

The kinematic velocity equations for cars #1 and cars #2 are given by

$$\begin{aligned} v_{f,1} &= (0.6) \left(9.8 \frac{m}{s^2}\right) \left(5.5 s\right) , \quad v_{f,2} &= (0.3) \left(9.8 \frac{m}{s^2}\right) \left(5.5 s\right) \\ v_{f,1} &= 32.5 \frac{m}{s} , \quad v_{f,2} &= 16.2 \frac{m}{s} \end{aligned}$$

Problem (3.)

The kinematic equation for the y-velocity of the ball has $v_{f,y} = 0$ at the highest point of the ball's flight. Therefore

$$0 = 196 \frac{m}{s} - (9.8 \frac{m}{s^2}) t \rightarrow t = \left(\frac{196}{9.8}\right) \frac{m}{s} = 20 s$$

is the time it takes to reach that point. This implies that the ball is in the air for $40 \ s$. This is impossible.

Problem (4.)

This problem is solved by setting up a table as was done in many of the homework problems

Vector	x-component	y-component
$ec{d_1}$	0m	-3 m
$\vec{d_2}$	-4m	0m
$\vec{d_3}$	0 m	10m
$\vec{d_4}$	-2m	0 m
$ec{d_5}$	0 m	8m
$\vec{d_6}$	2m	0m
$\vec{d_1} + + \vec{d_6}$	-4m	15m

So magnitude of the total displacement vector is

$$\left| \vec{d_1} + \dots + \vec{d_6} \right| = \sqrt{16 + 225} \ m = \sqrt{241} \ m = 15.52 \ m$$

and the angle above the y-axis in the third quadrant is just

$$tan(\theta) = \frac{15}{4} \rightarrow \theta = tan^{-1}\left(\frac{15}{4}\right) = 75.1^{\circ}$$

Problem (5.)

Let the tension in the string on the left be denoted by T_1 and name the angle θ_1 between the vertical and the first string. Let the tension in the string on the right be denoted by T_2 and name the angle θ_2 between the vertical and the second string. Finally let the tension in the vertical string be named T_3 .

(a.) For the 5 kg mass after drawing a force diagram, Newton's second law gives the first two equations

$$m_1 a_{1,x} = 0$$
 , $m_1 a_{1,y} = T_3 - m_1 g$

For the 50 kg mass after drawing a force diagram, Newton's second law gives the third and fourth equation

$$m_2 a_{2,x} = -T_2 + \mu N_f$$
, $m_2 a_{1,y} = N_f - m_2 g$

From the place where the strings are tied

$$T_1 \cos(\theta_1) + T_2 \cos(\theta_2) = T_3$$
$$-T_1 \sin(\theta_1) + T_2 \sin(\theta_2) = 0$$

(b.) Since we have an equilibrium, it follows that all accelerations are equal to zero. So from the second equation above we see $T_3 = m_1 g$ and from the fourth equation $N_f = m_2 g$. Using this information, the third equation implies $T_2 = \mu m_2 g$ and using the conditions where the strings are tied gives

$$T_1 \cos(\theta_1) + \mu m_2 g \cos(\theta_2) = m_1 g$$

$$T_1 \sin(\theta_1) + \mu m_2 g \sin(\theta_2) = 0$$

We multiply the first of these by $sin(\theta_1)$, multiply the second by $cos(\theta_1)$ and then add the two equations together

______ = _____

$$T_1 \cos(\theta_1) \sin(\theta_1) + \mu m_2 g \cos(\theta_2) \sin(\theta_1) = m_1 g \sin(\theta_1)$$

- $T_1 \sin(\theta_1) \cos(\theta_1) + \mu m_2 g \sin(\theta_2) \cos(\theta_1) = 0$

 $\mu m_2 g \cos(\theta_2) \sin(\theta_1) + \mu m_2 g \sin(\theta_2) \cos(\theta_1) = m_1 g \sin(\theta_1)$ $\mu m_2 g \left[\cos(\theta_2) \sin(\theta_1) + \sin(\theta_2) \cos(\theta_1) \right] = m_1 g \sin(\theta_1)$ $\mu = \frac{m_1 \sin(\theta_1)}{m_2 \left[\cos(\theta_2) \sin(\theta_1) + \sin(\theta_2) \cos(\theta_1) \right]}$ $\mu = \frac{\sin(\theta_1)}{10 \left[\sin(\theta_1 + \theta_2) \right]}$

(c.) We already know $T_3 = (5 \ kg) \ (9.8 \ \frac{m}{s^2}) = 49 \ N$. For T_2 and T_1 we find

$$T_2 = \frac{(49 N) \sin(\theta_1)}{\left[\sin(\theta_1 + \theta_2)\right]} , \quad T_1 = \frac{(49 N) \sin(\theta_2)}{\left[\sin(\theta_1 + \theta_2)\right]}$$

Problem (6.)

The radius of the Moon must be $R = (3.48)/2 \times 10^6 \ m = 1.74 \times 10^6 \ m$. The circumference of the Moon is then given by

$$C = 2\pi R$$

and if it takes time T to completely go around then the speed is

$$v = \frac{2\pi R}{T}$$

and also the acceleration must be

$$a = \frac{v^2}{R} = \frac{4\pi^2 R}{T^2}$$

This acceleration is to be set equal to the acceleration of gravity at the Moon surface

$$\frac{1}{6}g = \frac{4\pi^2 R}{T^2}$$

$$T^2 = \frac{24\pi^2 R}{g}$$

$$T = \pi \sqrt{\frac{24R}{g}}$$

$$= (3.14) \sqrt{\frac{24(1.74 \times 10^6)}{9.8}} s = 6485 s = 1.8 \, hrs.$$