PHYS115 Inquiry into Physics

MTuW 2-4pm in PHY 3316

Instructor: Dr. R. Padraic Springuel Office: Physics 1326 Email: rspringu@umd.edu Extension: x56179 Office Hours: MWF 1–2pm and by appointment

Fall 2011

This course is designed to familiarize you with some of the basic physics principles that you might be called upon to teach in a elementary or middle school classroom. In particular we will focus on three units: Electricity, Heat and Energy, and Motion. Each unit will consist of a series of open-ended investigations that could be adapted for use in your future classroom. Additionally, you will be asked to reflect on your experience as a learner in these experiments and what implications that might have in teaching this kind of material to children.

Lab Manual

Each experiment that you do in this course will have a two page handout. This handout will list the materials which should be on your lab table when you come in (if you find something missing, please let me know immediately), some initial definitions, givens, instructions, and questions. The instructions and questions are deliberately vague or generic in places in order to give you more freedom to explore the phenomena you are studying.

You will need to maintain a 3-ring binder as a lab manual for this course. All of your handouts should go into this binder. Additionally you may need to add pages if you run out of room on the handouts. When you need to turn something in, scan the appropriate pages from your binder and then replace the originals back in the binder in the appropriate place.

Laboratory

You will be working in class in groups of 3 or 4 students. Every member of the group is expected to contribute to the group discussions, setup and performing of experiments, and recording and reporting results. You will work with the same group for an entire unit (barring exceptional circumstances) and the groups will be shuffled so that you work with different people for each unit.

Journal

Each activity in the Lab Manual has a journal page with 6 questions on it (front and back). Using these questions as a guideline, you are expected to spend at least 15 minutes on the same day after each class reflecting on your experience in the classroom as a learner. These reflections should be written up in your Lab Manual, but need not be in paragraph form. They will not be graded, but do count towards your

participation in the course. You must scan and upload these journal entries to ELMS the day after class. The journal entry for November 23rd (the day before Thanksgiving) is due November 28th (the Monday after Thanksgiving).

Teaching Implications

Each week you are to write a 1–3 page paper discussing how your experiences as a learner are relevant to teaching. You should reflect on how you could use or modify the activities done in class to promote those experiences which you would want your students to have and avoid those which you would want them to avoid. These papers need to be typed and and should be uploaded to ELMS in pdf format each Friday.

Taking Stock

Roughly half-way through and at the end of each unit we will have a class discussion of the physics that we have been exploring in class. You are encouraged to prepare for this discussion by writing down your understanding on the appropriate page in your Lab Manual ahead of time and then taking notes during class which clarify, amplify, or correct your understanding.

After the second Taking Stock Discussion for each unit you will have to write up a paper describing your understanding of the physics in that unit. Emphasis in this paper should be given to mechanistic explanations and conceptual relationships, not to mathematical formulas. This paper should be uploaded to ELMS in pdf format 1 week after the second Taking Stock Discussion for the first two units and by the final exam for the last unit.

Final Exam

The final exam for this course will be Monday, December 19th from 1:30–3:30pm (the slot reserved for MW classes which meet at 2pm). It will be cumulative and will cover the material in the Taking Stock Discussions and Papers.

Grading

With the exception of the Journal Entries, which are awarded points solely for completion, everything that you turn in will be graded and returned to you no more than 1 week after it is due. Points are assigned in the following manner:

Journal Entries	37 at 5 points each	185
Teaching Implications	13 at 20 points each	260
Taking Stock Papers	3 at 150 points each	450
Final Exam	1 at 150 points	150
	Total Points	1045

Your final grade will be calculated out of 1000 points, giving you a few extra points to play around with.

Attendance

Since this course consists primarily of labs which build on each other, attendance to every class meeting is essential. If you cannot attend class for a valid reason, as defined by the University attendance policy (http://www.testudo.umd.edu/soc/atedasse.html), then you will be given the option of an alternative assignment to make up for the ones you missed. Absences will never excuse you from the Taking Stock Papers, though alternative arrangements may be made for turning them in.

Honor Pledge

The University has a nationally recognized Honor Code, administered by the Student Honor Council. The Student Honor Council proposed and the University Senate approved an Honor Pledge. The University of Maryland Honor Pledge reads:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination.

Unless you are specifically advised to the contrary, the Pledge statement should be handwritten and signed on the front cover of all papers, projects, or other academic assignments submitted for evaluation in this course. Students who fail to write and sign the Pledge will be asked to confer with the instructor.

For more information on the Honor Pledge visit http://www.studenthonorcouncil.umd.edu/.

Students with Disabilities

If you have a disability which would interfere with your performance in this course and would like to request accommodations, you must consult with Disability Support Services and obtain an Accommodation Letter from them. Once you present me with this letter, I will make every effort to follow the requested accommodations where doing so can be done without compromising the learning experience of the course.

Semester Calendar

This calendar is subject to change and does not constitute a part of the syllabus proper.

Monday	TUESDAY	WEDNESDAY	Friday
Aug 29th	30th	31st 1 Introduction	Sep 2nd
5th Labor Day No Class	6th 2 E1: Batteries and Bulbs	7th 3 E2: What Materials are Conductors?	9th Teaching Implications Due
12th 4 E3: Batteries in Series	13th5E4: Bulbs in Series	14th6E5: Parallel Circuits	16th Teaching Implications Due
19th7E6: Size and Directionof Current I	20th8Taking Stock onElectricity Discussion I	21st 9 E7: Static Electricity	23rd Teaching Implications Due
26th10E8: Size and Directionof Current II	27th 11 E9: Power Supplies, Voltmeters, and Ammeters	28th12E10: Using Excel toMake Graphs	30th Teaching Implications Due
Oct 3rd 13 E11: Ohm's Law	4th14E12: Resistors	5th15E13: Magnets	7th Teaching Implications Due
10th16E14: Currents and Magnetism	11th17Taking Stock onElectricity Discussion II	12th18H1: Touch andTemperature	14th Teaching Implications Due
17th 19 H2: Equilibrium	18th20H3: Mixing Water atDifferent TemperaturesTaking Stock onElectricity Paper Due	19th 21 H4: Mixing Un-like Materials	21st Teaching Implications Due
24th22Taking Stock on Heatand Energy DiscussionI	25th 23 H5: Mixing Ice and Water I	26th24H6: Mixing Ice andWater II	28th Teaching Implications Due
31st 25 H7: Freezing Water I	Nov 1st 26 H8: Freezing Water II	2nd 27 H9: Condensing Steam	4th Teaching Implications Due

Monday	TUESDAY	WEDNESDAY	Friday
7th 28	8th 29	9th 30	11th
H10: Temperature of	Taking Stock on Heat	M1: Introduction to	Teaching Implications
Liquid Nitrogen	and Energy Discussion	the Motion Detector	Due
	II		
14th 31	15th 32	16th 33	18th
M2: Practice	M3: Practice Reading a	M4: Using Computer	Teaching Implications
Predicting What a Graph, Making an		Tools to Understand	Due
Graph Will Look Like Equation for a Graph		your Graph	
	Taking Stock on Heat		
	and Energy Paper Due		
21st 34	22nd 35	23rd 36	25th
M5: Introduction to	M6: Motion with a	M7: Motion with "No"	Thanksgiving Recess
Instantaneous Velocity	Constant Force	Force	No Class
and Acceleration			
28th 37	29th 38	30th 39	Dec 2nd
Taking Stock on	M8: Test your	M9: Test your	Teaching Implications
Motion Discussion I	Understanding I	Understanding II	Due
5th 40	6th 41	7th 42	9th
M10: Equation for	M11: Relation Between	M12: Gravity	Teaching Implications
Distance versus Time	Force, Mass, and		Due
for Constant Force	Acceleration		
12th 43	13th 44	14th	16th
M13: Pendulum	Taking Stock on		
	Motion Discussion II		
1011	2011	01	22.1
19th	20th	21st	23rd
Taking Stock on			
Motion Paper Due			
Final Exam			
1:30–3:30pm			