Balls and Frisbees

Question:

A smooth, gentle river is flowing past a cylindrical post. At the sides of the post, is the water level higher, lower, or equal to its level in the open river?

Aerodynamic Forces

- Drag Forces
 - point directly downstream
 - are caused by slowing the fluid flow
 - transfer downstream momentum to object
- Lift Forces
 - point at right angles to flow
 - are caused by deflecting the fluid flow
 - transfer sideways momentum to object

Drag & Lift

- Viscous drag: surface friction
- Pressure drag: turbulence
- Induced drag: side effect of deflecting flow
- Lift: deflecting flow

Perfect Flow

- Pressure rises in front - slow flow, high pressure
- Pressure drops on side – fast flow, low pressure
- Pressure rises in back - slow flow, high pressure
- Only viscous drag

Question:

A smooth, gentle river is flowing past a cylindrical post. At the sides of the post, is the water level higher, lower, or equal to its level in the open river?

Onset of Turbulence

- Viscous drag slows flow near surface
- Flowing into higher pressure slows flow
- When surface flow stops, turbulence ensues

Imperfect Flow – Low Speeds

- Pressure rises in front
- Pressure drops on side
- Large wake forms in back
 - Ambient pressure in wake
 - Large pressure drag

Boundary Layer

- Flow near surface forms "boundary layer"
- At low Reynolds number (<100,000) – boundary layer is laminar
 - slowed by viscous drag
- At high Reynolds number (>100,000)
 boundary layer is turbulent
 - not slowed very much faster

Imperfect Flow - Fast

- · Pressure rises in front
- Pressure drops on side
- Small wake forms in back
- Ambient pressure in wake
- Small pressure drag

Tripping the Boundary Layer

- To reduce pressure drag
 - trip the boundary layer
 - initiate turbulence in the boundary layer
 - delay flow separation on back of ball
 - shrink the turbulent wake
- Examples: Tennis balls and Golf balls

Spinning Balls – Magnus Force

- Surface pulls flow with it
- Flow is faster on one side
- Flow is deflected overall
- Magnus lift force

Spinning Balls - Wake Force

- Surface pulls flow with it
- Wake is asymmetric
- Flow is deflected overall
- Wake deflection lift force

Frisbees Above Frisbee - airflow bends inward - pressure drops speed increases • Below Frisbee - airflow bends outward - pressure rises - speed decreases

Starting Flight

- Airflow starts symmetric
- No net deflection of air
- No lift

Vortex Shedding

- Trailing airflow unstable
- Vortex peals away with ccw angular momentum
- Remaining airflow has cw angular momentum

Stable lift

- After vortex is shed, Frisbee has lift
- Air is deflected downward
- Frisbee is pushed upward
- Airflow around Frisbee has angular momentum

