Garden Watering

Question:

- Water pours weakly from an open hose but sprays hard when you cover most of the end with your thumb. When is more water coming out of the hose?
- 1. When the hose end is uncovered.
- 2. When your thumb covers most of the end.

Faucets: Limiting Flow

- Water's total energy is limited by its pressure
 Maximum kinetic energy limited by total energy
 Maximum speed limited by kinetic energy
- Water has viscosity (friction within the fluid) - Water at the walls is stationary
 - Remaining water slows due to viscous forces

Viscous Forces

- Oppose relative motion within a fluid
- Similar to sliding friction waste energy
- Fluids are characterized by their viscosities

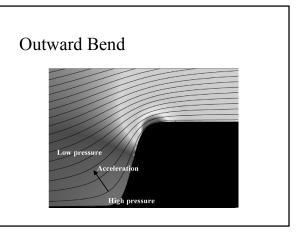
Hoses: Limiting Flow

- Water flow through a hose:
 - Increases as 1/viscosity
 - Increases as 1/hose length
 - Increases as pressure difference
 - Increases as (pipe diameter)⁴
- · Poiseuille's law:

Water Flow in a Hose

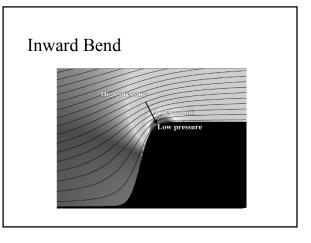
- Flowing water loses energy to viscous drag
- · Viscous drag increases with flow speed
 - Faster flow leads to more viscous energy loss
 - Faster flow causes quicker drop in pressure

Question:

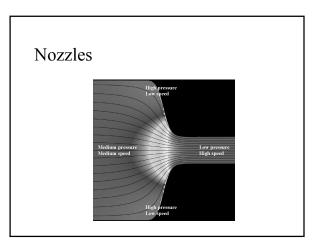

- Water pours weakly from an open hose but sprays hard when you cover most of the end with your thumb. When is more water coming out of the hose?
- 1. When the hose end is uncovered.
- 2. When your thumb covers most of the end.

Accelerating Flows

- Water in steady-state flow can accelerate
- Acceleration must be partly to the side
 - Pure forward acceleration would expand water
 Pure backward acceleration would compress water
- Sideways acceleration
 - requires obstacles
 - causes pressure imbalances
 - causes speed changes


Outward Bend

- Deflecting water away from a surface
 - $-\operatorname{involves}$ acceleration away from the surface
 - $\mbox{ is caused by an outward pressure gradient}$
 - higher pressure near surface
 - lower pressure away from surface
 - causes water to travel slower near the surface


Inward Bend

- Deflecting water toward a surface
 - involves acceleration toward surface
 - is caused by inward pressure gradient
 - · lower pressure near surface
 - higher pressure away from surface
 - causes water to travel faster near the surface

Nozzles: Speeding Water Up

- Water passing through a narrowing speeds up
 - experiences a drop in pressure
- Water passing through a widening slows down
 - experiences a rise in pressure

Types of Flow

- Laminar Flow
 - Nearby regions of water remain nearby
- Viscosity dominates flow
- Turbulent Flow
 - Nearby regions of water become separated
 - Inertia dominates flow

Reynolds Number

- Reynolds number controls type of flow
- Below about 2300 : Laminar flow – Viscosity dominates
- Above about 2300 : Turbulent flow – Inertia dominates

Water and Momentum

- Water carries momentum
- Momentum is transferred by impulses: impulse = pressure imbalance · surface area · time
 - Large momentum transfers require either
 - long times
 - large surface areas
 - or large pressure imbalances
- Moving water can be hard to stop