Physics Education Research: A personal historic overview

Edward F. Redish
Department of Physics
University of Maryland

with the help of
David Hammer
Key idea: Learning to do science at the professional level — or any complex field — is different from learning broad general skills like reading or arithmetic

- Content dependence
- Specialized skills

Implies that developing an understanding of learning difficulties and creating effective learning environments require substantial input from professionals.

Throughout its history (since 1980) there have been important contributions from both PER-Φ/E

* Refers to physics education research done by physicists (Φ) and education specialists (E)
Sputnik crisis (1957) raised profile of science education.

Many scientists began to be involved in educational design (especially for HS)
- Karplus
- Arons
- Reif
- Zacharias

PER as a research activity began ~1980.
- Done by educators, physicists, and cognitive scientists
Some early papers

Organizations

- American Educational Research Education (est 1916)
- National Association for Research in Science Teaching (1928)
- Cognitive Science Society (1979)
- American Association of Physics Teachers, Committee for Research in Physics Education (1980)
Student difficulty research, primarily on
 - Mechanics
 - Direct current circuits
 - Geometrical optics

Early version of
 Force Concept Inventory (1985)

Harvard gets on board (1989)
Concepts Research

- Extensive research since about 1980 has demonstrated that in most areas of physics, introductory students show common misunderstandings, even after instruction.
- Standardized concept surveys based on this research began to appear about 1985.
- > 20 such surveys now exist.*

* 17 are included on the resource CD that comes with my *Teaching Physics with the Physics Suite*.
An Example: The Force Concept Inventory (FCI)

- A 30 item multiple choice test to probe student's understanding of basic concepts in mechanics.
- The choice of topics is based on careful thought about what the fundamental issues and concepts are in Newtonian dynamics.
- Uses common speech rather than cueing specific physics principles.
- The distractors (wrong answers) are based on students' common inferences.
Imagine a head-on collision between a large truck and a small compact car. During the collision:

(A) the truck exerts a greater amount of force on the car than the car exerts on the truck.

(B) the car exerts a greater amount of force on the truck than the truck exerts on the car.

(C) neither exerts a force on the other, the car gets smashed simply because it gets in the way of the truck.

(D) the truck exerts a force on the car but the car does not exert a force on the truck.

(E) the truck exerts the same amount of force on the car as the car exerts on the truck.
The 1990’s

- Difficulty research extended to other topics
 - Heat
 - Electrostatics
 - Waves
 - Physical optics
 - Quantum physics
- New topics: the hidden curriculum (MPEX)
- Development of many research-influenced learning environments
- ICUPE, College Park 1996
Concept surveys

Math
- Mathematical Modeling Conceptual Evaluation
- Test of Understanding Graphs -- Kinematics
- Vector Evaluation Test

Mechanics
- Force Concept Inventory
- Force-Motion Concept Evaluation
- Mechanics Baseline Test
- Energy Concepts Survey

Waves
- Wave Diagnostic Test

E&M
- Conceptual Survey of Electricity and Magnetism
- Determining and Interpreting Resistive Electric Circuits Concept Test
- Electric Circuits Concept Evaluation

Heat, Temperature, and Thermodynamics
- Heat and Temperature Concept Evaluation

Laboratory Concepts
- Physics Measurement Questionnaire
- Measurement Uncertainty Quiz
Curricular options: What’s available?

- A wide variety of research-based reform materials became available in the ‘90s.
 - Research is helping us understand what students need to do to learn physics more effectively.
 - Reform materials focus on creating environments in which students will learn more effectively.
 - Reform materials take into account common confusions and difficulties students have with the subject.
Workshop Physics*
\((N = 20 - 30)\)

- In a WP room
 - students use computer tools for observation and modeling
 - guided inquiry model
 - instructor in the room’s center can see all computer screens at once.
 - class can easily switch from small to large group discussion.

Tutorials (N=20-30 subsets)

- Tutorials are research-based worksheets and facilitators done in small groups (3-4).
- Elements contain
 - pretest
 - research-based worksheet
 - training session for TAs
 - tutorial homework
 - exams have a tutorial question

Different instructional models produce better conceptual gains

- We gave the FCI before and after instruction in 1st semester university physics in 15 universities who used 4 instructional models:
 - traditional (lecture) + recitation
 - traditional (lecture) + tutorial (RB)
 - traditional (lecture) + group problem solving (RB)
 - workshop physics. (RB)

- We observed both primary and secondary implementations of the research-based curricula.

Imagine a head-on collision between a large truck and a small compact car. During the collision:

(A) the truck exerts a greater amount of force on the car than the car exerts on the truck.
(B) the car exerts a greater amount of force on the truck than the truck exerts on the car.
(C) neither exerts a force on the other, the car gets smashed simply because it gets in the way of the truck.
(D) the truck exerts a force on the car but the car does not exert a force on the truck.
(E) the truck exerts the same amount of force on the car as the car exerts on the truck.

With modified instruction (N=280)

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>35%</td>
<td>83%</td>
</tr>
</tbody>
</table>
Results

The research-based curricula showed improvement in the fraction of the possible gain in concept learning as measured by the FCI:

\[h = \frac{(\text{posttest average} - \text{pretest average})}{(100 - \text{pretest average})} \]

- \(h = 0.20 \pm 0.03 \) traditional
- \(h = 0.34 \pm 0.01 \) recitation modifications
- \(h = 0.41 \pm 0.02 \) Workshop Physics (early secondary implementations)
- \(h = 0.73 \) (Dickinson College)
FCI Conceptual Learning Efficiencies

Distribution of h for various instructional methods (idealized)

- Traditional
- Tutorial / GPS
- Workshop Physics

Redish & Saul (1998)
The 2000’s

- Synthesized environments
 - SCALE-UP
 - Studio Physics
 - Illinois

- Environments that go beyond concept learning

- Textbooks beginning to be affected by PER

- The Physics Suite

- Theory development?
Elements of The Physics Suite

Narrative

Guide to philosophy of the Suite

Workshop / Studio

Lab

Lecture tools

Tutorials
Current State of PER

- 30+ PhD granting physics departments with education research programs
- 49 tenure line junior faculty on “young per” mailing list (acc. to M. Wittmann)
- Annual 1.5-day PER Conference appended to AAPT national meeting (since 1997)
 - Attendance ~200
 - Published proceedings since 2002
 - Next year to be published by AIP
- Gordon conference series (2000, 2002...)
Journals

- Science Education (1916/1961)
- American Journal of Physics (as of 1972)
- Cognitive Science (1976)
- Cognition and Instruction (1982)
Methods

- **Large N (standardized tests and surveys)**
 - Pre/post assessments of progress understanding, attitudes, epistemologies
 - Some predictive testing of models

- **Small N (interviews and in situ observations)**
 - New: authentic data via videotape
 - Discovery and documentation of phenomena
 - Detailed analysis of dynamics
Current areas of research

- Phenomenology
 - Misconceptions
 - Epistemologies
 - Variability
- Theories of cognitive structure and mechanism
Sociology / Acceptance?

- **Tools**
 - Book (Arons ‘90)
 - Conferences (Raleigh ‘88, College Park ‘96)
 - Easily deliverable surveys (FCI, FMCE, MPEX)
 - Lectures and Colloquia (McDermott, Hestenes, Mazur, Redish)
 - Materials that work
 - APS support statement (‘99)
 - On-line review journal (‘05)

- **Some successes**
 - Kansas State, Maine, Maryland, NCState, Washington
The UMd PERG (2004):

- **Faculty**
 - Joe Redish* (Ph)
 - David Hammer* (Ph / C&I)
 - Emily van Zee (C&I)

- **Research Faculty**
 - Rachel Scherr* (Ph)
 - Andy Elby* (Ph)

- **Grad Students**
 - Leslie Atkins (Ph)
 - Paul Hutchinson* (C&I)
 - Tim McCaskey* (Ph)
 - Paul Gresser* (Ph)
 - Ray Hodges* (Ph)
 - Rosemary Russ (Ph)
 - Mattie Lau (C&I)
 - Renee-Michelle Goertzen (Ph)
 - Tom Bing (Ph)

* Participants in LtLS

[...] = LtLS alumni