HCAL HTR Pre-Production board specifications

The main use of this board is from May 2003 in Cern for Test beam and Slice tests.
In Cern are needed 11 boards + spares. In USA (UMD, BU, FNAL, Princeton) we need more boards to keep
development. Thus we should produce about 25 boards.

1. Changes from prototype board
[compare with HCAL HTR Prototype board specifications and design guidelines available on:
- add a TTC daughter card.
- add 6 SLBs on front-panel.
- The Front-Panel switches will be moved back and routed to the xilinx. The same for the sel line of the clock mux (Xtal or Clean_clk).
- JTAG an all devices that support it, possibly also for the programming of the gate arrays with the cable would be better
 with JTAG. Put jumper scheme to by-pass any device in the chain.
- on the VME FPGA there is an input clock from the VME back-plane. Replace it with a crystal oscillator.
 The reason is that this chip does not need synchronization with the rest of the board.
- Fiber input using the 8-channel passive Molex MTP Adapter on the front-panel and Stratos dual LC on board
- add stiffeners and possibly metal edges of the board.
- Connectors for Logic Analyzer in Local_Data, Local_Address, Local_other
- Every data connector of the SLB has half of its inputs from each of the 2 xilinx FPGAs.
- put ground “island” under all high-speed devices and clock drivers.
- The HTR prototype hangs up the bus when altera is not configured, find out why.
- In the unused portion of the board, put plenty of VCC and GND pads for reworking.

2. Board Input/Output

FE-Data Input
This data come on eight 100-meter optical fibers, 850nm, multimode 62.5/125 from the Cern GOL serializer to the MTP adapters.
From there, there is an 8-way MTP-to-LC fanout going to the SFF dual LC receivers PN M2R-25-9-TL from StratosLightWave.
The data-stream is on 1.6 Gb/s differential lines (DINRXP-DINRXN). Data are deserialized and 8B/10B decoded by eight TLK2501
parts (2.5V parts).

Timing Inputs
Timing signal are received via one RJ45 on a Cat 6E (or Cat7) cable. The TTC stream is a 160 MHz signal, RX_BC0 is a 40 MH
signal, RX_CLK is 40 MHz (jitter ~ 80ps pk-pk) and Clean_CLK is 80 MHz (jitter ~ 50ps pk-pk). On clock signals the jitter should
be minimized. The input connector is AMP 558342-1.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TTC-serial_P</td>
<td>2</td>
<td>TTC-serial_N</td>
</tr>
<tr>
<td>3</td>
<td>Rx_CLK_P (40 MHz)</td>
<td>4</td>
<td>Rx_BC0_P</td>
</tr>
<tr>
<td>5</td>
<td>Rx_BC0_N</td>
<td>6</td>
<td>Rx_CLK_N</td>
</tr>
<tr>
<td>7</td>
<td>CleanCLK_P (80 MHz)</td>
<td>8</td>
<td>CleanCLK_N</td>
</tr>
</tbody>
</table>

Table 1: Pin-out definitions on the RJ45 connector (pinning standard RG568B). All signals are 3.3V differential PECL.

The timing scheme is on a separate pdf document. Add buffers and terminations as needed.
RX_CLK and RX_BC0 have same length path to all SLBs (± 1 inch = 100 ps skew); the RX_BC0 pair go to the Xilinx
chips to two adjacent pads: IO_LXXP_# and IO_LXXN_#, with XX a unique pair in the bank and # indicates the bank
number (0 through 7).
The signals Brodcst[7:2], BrdcstStr, BcntRes, EvCntRes, L1A and Clk40Des1 come from the TTC mezzanine and go to
the 2 xilinx chips and to the 6 SLBs. TTC_Reset_b and TTCready are routed to one xilinx chip only.
Add a pair Test_CLK+/- from two test points to two diff. GCLK input of each xilinx.
Connect TTCready and TTCreset_b to a xilinx.

L1-Trigger outputs

Those are 24 x 9 lines from each Xilinx FPGA. They will be source terminated inside the FPGA. This requires that the xilinx N reference pin (VRN) be pulled up to VCCO by a 50 Ohm reference resistor, and the P reference pin (VRP) must be pulled down to ground by another 50 Ohm reference resistor (1/10 watt or more).

The top xilinx send the following outputs:

TP1[8:0], TP2[8:0], …, TP24[8:0]

To these inputs of each SLB: Sync1_[8:0], Sync2_[8:0], Sync5_[8:0] and Sync6_[8:0]

The bottom xilinx to the connector 2 send the following outputs:

TP25[8:0], TP26[8:0], …, TP48[8:0]

To these inputs of each SLB: Sync3_[8:0], Sync4_[8:0], Sync7_[8:0] and Sync8_[8:0]

L2-DAQ-Data Output

The only change from the HTR prototype is that the output connector is RJ-45, 5 pairs. The connector is made by Stewart, P/N SS-701010-NF, available from Arrow. Driver-to-connector assignment is as on the top-right side of: http://ohm.bu.edu/~hazen/my_d0/TxRx/ltb_2_5/LTB_sch.pdf

3. Main HTR FPGA

<table>
<thead>
<tr>
<th>Candidates</th>
<th>BRAM</th>
<th>I/O pins</th>
<th>Bitstream Length</th>
<th>$ (Avnet, >25pcs, Sep 02)</th>
<th>$ (Insight, ~100pcs Oct 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC2V2000-4BF957C</td>
<td>56</td>
<td>624</td>
<td>7,492,000 bits</td>
<td>590</td>
<td>472</td>
</tr>
<tr>
<td>XC2V3000-4BF957C</td>
<td>96</td>
<td>720</td>
<td>10,494,368 bits</td>
<td>930</td>
<td>743</td>
</tr>
<tr>
<td>XC2V4000-4BF957C</td>
<td>120</td>
<td>912</td>
<td>15,659,936 bits</td>
<td>1552</td>
<td></td>
</tr>
<tr>
<td>XC2V2000-4FF896C</td>
<td>56</td>
<td>624</td>
<td>7,492,000 bits</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>XC2V3000-4FF1152C</td>
<td>96</td>
<td>720</td>
<td>10,494,368 bits</td>
<td>930</td>
<td></td>
</tr>
<tr>
<td>XC2V3000-4BG728C</td>
<td>96</td>
<td>516</td>
<td>10,494,368 bits</td>
<td>852</td>
<td></td>
</tr>
</tbody>
</table>

Option 1) is our baseline. In case we need more resources options 1) and 2) are pin-out (footprint) compatible [Virtex-II handbook, page 42, Oct 2001].

Connect possibly ~4-wire switch, ~10 test points, ~2 LEDs to some unused pins.

Power connections: \(V_{CCO} = 2.5V \); \(V_{CCAUX} = 3.3V \).

Pin VRN must be pulled up to \(V_{CCO} = 2.5V \) by its 60 Ohm reference resistor. Pin VRP must be pulled down to ground by its 60 Ohm reference resistor.

4. VME FPGA: requirements and candidates

This FPGA will implement:
- The interface to the VME bus
- The configuration of the Main FPGAs and of the FLASH devices
- The master of the Local Bus
Requirement:
- 5V-tolerant
- System-gates: > 1000 Altera LCs
- No BGA
- No old parts

VME FPGA candidate devices:

Altera Acex EP1K30QC208-3 208-Pin PQFP $17
Altera Acex EP1K50QC208-3 208-Pin PQFP $22 SELECT THIS ONE!
Xilinx Spartan

VME FPGA pin candidates

149 pins in the following list

\CONFIG_CS1
\CONFIG_CS2
\CONFIG_PROG
\CONFIG_WRITE
\FLASH_1_CE
\FLASH_1_OE
\FLASH_1_WE
\FLASH_2_CE
\FLASH_2_OE
\FLASH_2_WE
\GA0
\GA1
\GA2
\GA3
\GA4
\VME_AS
\VME_DATA_OEB (I think this could be just pull-down + test point)
\VME_DS0
\VME_DS1
\VME_DTACK
\VME_LWORD
\VME_RESET
\VME_SYSRESET
\VME_WRITE
\CONFIG_CLK
\CONFIG_DONE1
\CONFIG_DONE2
\CONFIG_INIT1
\CONFIG_INIT2
\LOC_ADDR00
\LOC_ADDR01
\LOC_ADDR02
\LOC_ADDR03
\LOC_ADDR04
\LOC_ADDR05
\LOC_ADDR06
\LOC_ADDR07
\LOC_ADDR08
\LOC_ADDR09
\LOC_ADDR10
\LOC_ADDR11
\LOC_ADDR12
\LOC_ADDR13
\LOC_ADDR14
\LOC_ADDR15
\LOC_ADDR16
LOC_ADDR17
LOC_ADDR18
LOC_ADDR19
LOC_ADDR20 (required for Flash Am29LV116D)
LOC_CS_MAIN1
LOC_CS_MAIN2
LOC_CS_SLB1
LOC_CS_SLB2
LOC_CS_SLB3
LOC_CS_SLB4
LOC_CS_SLB5
LOC_CS_SLB6
LOC_DATA00
LOC_DATA01
LOC_DATA02
LOC_DATA03
LOC_DATA04
LOC_DATA05
LOC_DATA06
LOC_DATA07
LOC_DATA08
LOC_DATA09
LOC_DATA10
LOC_DATA11
LOC_DATA12
LOC_DATA13
LOC_DATA14
LOC_DATA15 (up to 15 required by SLBs)
LOC_DATA16
LOC_DATA17
LOC_DATA18 (very useful for spy fifos etc)
LOC_R/W
SCL
SDA
VME_A01
VME_A02
VME_A03
VME_A04
VME_A05
VME_A06
VME_A07
VME_A08
VME_A09
VME_A10
VME_A11
VME_A12
VME_A13
VME_A14
VME_A15
VME_A16
VME_A17
VME_A18
VME_A19
VME_A20
VME_A21
VME_A22
VME_A23
VME_AM0
VME_AM1
VME_AM2
VME_AM3
VME_AM4
VME_AM5
VME_DATA_DIR_B
VME_DATA00
VME_DATA01
VME_DATA02
VME_DATA03
VME_DATA04
VME_DATA05
VME_DATA06
VME_DATA07
VME_DATA08
VME_DATA09
VME_DATA10
VME_DATA11
VME_DATA12
VME_DATA13
VME_DATA14
VME_DATA15
VME_DATA16
VME_DATA17
VME_DATA18
VME_DATA19
VME_DATA20
VME_DATA21
VME_DATA22
VME_DATA23
VME_DATA24 (serial test points + jumper)
VME_DATA25 (serial test points + jumper)
VME_DATA26 (serial test points + jumper)
VME_DATA27 (serial test points + jumper)
VME_DATA28 (serial test points + jumper)
VME_DATA29 (serial test points + jumper)
VME_DATA30 (serial test points + jumper)
VME_DATA31 (serial test points + jumper)
VME_FPGA_CLK40
VME_LED1
VME_LED2
VME_TP1
VME_TP2
VME_SW1
VME_SW2

--- special pins (verify that they are not counted as user i/o) ---------------------------------

VME_TCK
VME_TDI
VME_TDO
VME_TMS
NCONFIG_1
NSTATUS_1
CONF_DONE_1
EPC_CLK_1
EPC_DATA_1

--- removed lines (compared to HTRproto) -----------------------------------

FLASH_RESET (overwrite instead)
BASE0 BASE1 BASE2 (unused in HTRproto) CLOCK_SELECT (from on-board switch)
\VME_BERR (just pull-down on the board) \VME_SYSCLK (can we leave it ?)
VME_A24 VME_A25 VME_A26 VME_A27 VME_A28 VME_A29 VME_A30 VME_A31
LOC_DATA19 LOC_DATA20 LOC_DATA21 LOC_DATA22 LOC_DATA23 LOC_DATA24
\[\text{VME_MODE_SELECT0, 1, 2}\]
\[\text{LOC_ADDR_OE}\ (\text{no more transition board})\ \text{LOC_DATA_OE}\ (\text{no more transition board})\]

Put test points on the unused pins, including CLOCK2 (This pin can only be used as input or clock only).

== Programming Altera and Xilinx with JTAG ==

shouxiang wu wrote:

> There should be no problem. You download Altera chip with Altera software and you download Xilinx chip with Xilinx software. With an adapter cable, you can use Altera byteblaster as Xilinx parallel cable.

5. POWER CONSUMPTION ESTIMATE

<table>
<thead>
<tr>
<th>Component</th>
<th>$P_{\text{diss}} \times (# \text{ of components})$</th>
<th>$@ V$</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Opt. Receivers</td>
<td>0.5 W $\times 8 = 4$ W</td>
<td>3.3V</td>
<td>Data Sheet</td>
</tr>
<tr>
<td>Ch. Link TX</td>
<td>0.1 W $\times 2 = 0.2$ W</td>
<td>3.3V</td>
<td>Data Sheet</td>
</tr>
<tr>
<td>SLB 3.3V [Vitesse=3W, 2 x Altera = 2 x 1W]</td>
<td>5 W $\times 6 = 30$ W</td>
<td>3.3V</td>
<td>Data Sheets</td>
</tr>
<tr>
<td>Xilinx XC2V3000b957-4</td>
<td>0.1 W $\times 2 = 0.2$ W</td>
<td>3.3V</td>
<td>XPower (41 MHz,50% activity rate)</td>
</tr>
<tr>
<td>other</td>
<td>1W</td>
<td>3.3V</td>
<td></td>
</tr>
<tr>
<td>Total from 3.3V</td>
<td>== 36 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI TLK2501</td>
<td>260 mW $\times 16 = 4.2$ W</td>
<td>2.5V</td>
<td>Data Sheet</td>
</tr>
<tr>
<td>SLB 2.5V</td>
<td>0.5 W</td>
<td>2.5V</td>
<td></td>
</tr>
<tr>
<td>Xilinx XC2V3000b957-4</td>
<td>0.6 W $\times 2 = 1.2$ W</td>
<td>2.5V</td>
<td>XPower (41 MHz,50% activity rate)</td>
</tr>
<tr>
<td>Xilinx XC2V3000b957-4</td>
<td>2.1 W $\times 2 = 4.2$ W</td>
<td>1.5V</td>
<td>XPower (41 MHz,50% activity rate)</td>
</tr>
</tbody>
</table>

Regulator for 2.5V National Semi. LM1084 = output power = 6W +5V

Regulator for 1.5V National Semi. LM1084 > output power = 4.2W +5V

Total from 5V = 25W

Maximum front (VMEbus) 9U module power dissipation = 110W

Note: Each VME64x module has 6 +5V pins, 1 +5VSTDBY pin, 3 VPC (+5V) pins, 10 +3.3V pins, … The pin power-rating curve given in VME64 allows approximately 1.5A per pin at 20°C. Thus each board has potentially 15A at +5V (75W), 15A at 3.3V (49.5W), … The maximum power values … are derived from acceptable power densities in the specified cooling environment. [see "TECHNICAL SPECIFICATION FOR SUBRACKS FOR LHC EXPERIMENTS” availab. on: http://atlas.web.cern.ch/Atlas/GROUPS/FRONTEND/documents/Crate_Technical_Specification_final.pdf]

6. COST ESTIMATE

2 8-way optical ports 2 x $170= $340
8 Dual LC O/E 8 x $100 = $800
16 TLK2501 serdes 16 x $16 = $256
2 xilinx FPGA 2 x $472 = $944 or 2 x $743 = $1486
6 SLB mezzanine cards 6 x $250 = $1500
1 TTCrx & mezzanine $ 200
Other parts (Altera, buffers, connectors) $ 270

Total parts $ 4150 or $ 4700

PCB manufacturing $ 300
Assembly $ 250

HTR TOTAL $ 4860 or $ 5400