HCAL Trigger Primitive Generator

Tullio Grassi
University of Maryland
September 2004
Trigger-Path (simplified)
Case with Sum of FE-channels

“NO-SHOWER” LUT

- take care of cases where showers can leak into a cell and incorrectly set the muon bit.
Trigger-Path
Case with Sum of FE-channels

HCAL PRS group should do some simulations to evaluate the efficiency before implementing it

“NO-SHOWER” LUT
take care of cases where showers can leak into a cell and incorrectly set the muon bit.
Successfully initialized and read-back these LUTs. Storage of LUT data has been integrated with the prototype of the HCAL/EMu/Pixel Database.

“NO-SHOWER” LUT take care of cases where showers can leak into a cell and incorrectly set the muon bit.
Trigger-Path
Case with Sum of FE-channels

Subtle changes in latency, depending on the settings (see next slides)

“NO-SHOWER” LUT take care of cases where showers can leak into a cell and incorrectly set the muon bit.
Latency of Synchronization FIFO

WrClk

RdClk

FIFO content

Links established.

Some of the FIFOs can be read "immediately" after writing.
Latency of Synchronization FIFO

WrClk
RdClk
FIFO content
1 0 1 0 1 0 1 0 1 0
Latency

Links established.

Some of the FIFOs can be read “immediately” after writing.

Channel alignment with histograms of LHC structure

n
Latency of Synchronization FIFO

Links established. Some of the FIFOs can be read "immediately" after writing.

Channel alignment with histograms of LHC structure

Peak of jitter in one of the clocks.
Latency of Synchronization FIFO

Links established. Some of the FIFOs can be read “immediately” after writing.

Channel alignment with histograms of LHC structure

Peak of jitter in one of the clocks.

Latency shift by one
Latency of Synchronization FIFO

A possible solution requires a preset sequence of the FIFO:

- make sure the FIFO is empty (reading without writing)
- write 1 word
- read and write continuously

We have already tried it.

PROBLEMS

- Read and Write controls are in different clock domains → hard to control
- Extra word increases latency

Alternative solution:
- we send the BC0 together with the data
- monitoring FE-BC0 will show shift in latency
- reset when this happens
Improved the Test Pattern Mode

SEQUENCE

One Test Pattern RAM per FE-link → independent data per channel
Load RAMs over VME
Set a Pattern_Mode bit over VME → two-level protection
still use real FE-data
Send a TTC broadcast (TestEnable) → inject patterns now
Run the FIFO patterns only once
Use again real FE-data → can place a peak on top of real pedestals
...but keep the data stored
Time-stamps in the DAQ-data
A VME-reg stores the BX# of the last TTC TestEnable broadcast → t.b.d.

MAIN USE: bld 904
Verification

We are implementing 64-bit CRC checksums to identify:
• firmware downloaded into FPGAs
• LUT content

Verification will be done comparing the calculation done in software and firmware.

CMS standard feature and codes?
HTR-SLB-RCT integration in May 04 [Wisconsin]

- One of the problems was related to the HTR
- TTC messages [TX_BC0] did not reach the SLB
- The problem has been identified in Maryland and fixed
- Problem was the termination of TTCrx outputs
A technical look at TB04 Data

• Event counter is reliable
• SLINK event error rate [CRC] $\leq 0.025\%$
• Bunch counter in HTR and DCC is consistently off-by-one (problem easily understood)
Trigger Primitives in the DAQ Path

• While the role of the TP is to be sent to the RCT, the readout of the TP will be done through the DAQ path from HTR \rightarrow DCC as part of the event subfragment.
 – This functionality has been defined earlier, but was seriously tested.

• HTR Rev4 starts up with “identity matrix” TPG Look-Up-Tables.

• TPGs in the data fragment use resources
 – for any given channel:
 $\#\text{TPG samples} + \#\text{DAQ samples} \leq 20$

• Tested in Maryland

• Who is the customer?
Slice integration tests at H2

• The testbeam environment has advantages over SX5 for initial integration tests.
 – High rate, structured, controllable source of particles
 – Easy access to adjust hardware
 – Focused time period for initial shakedown testing
 – End Oct 15th

• HCAL + EMu

• Goals:
 1. Synchronization with separate readout
 2. Combined readout in single EventBuilder
 3. Unified Run Control and prototype DCS systems
Slice test: Goals

• Prerequisite: subdetectors complete electronics validation before test
 – Both HCAL and EMu have had very successful testbeams already.

• Goals:
 1. Synchronization with separate readout
 2. Combined readout in single EventBuilder
 3. Unified Run Control and prototype DCS systems
Slice test: Trigger and TTC

- EMu and HCAL will have separate TTCvi modules, with clocks derived from a common point.

- Control signals will come from a *common* HCAL TriggerBoard.

- Orbit signal (~930 clocks/orbit) from PCR will be used during spills.

- Trigger sources:
 1. Scintillator coincidence (external, standard trigger)
 2. EMu TrackFinder/Sector Processor (“real” trigger)
 3. “Sandwich board” on HTRs – trigger from calorimeter data
Integration at SX5 (slice test 2)

- The magnet test period (summer 2005) provides the most comprehensive opportunity to integrate multiple subdetectors before we go underground.
 - Several sub-systems will be installed in the final configuration and the detector will be closed for several months.
 - The disruptions and dangers of active installation will be paused.
 - Integration with central DAQ is possible using the pre-series system installed in the Green Barrack.
HTR board production

Feb 2004: 3 HTRs received: small changes necessary
July 2004: 6 HTRs assembled: assembly yield was low: 4/6
Sept 2004: sending out 6 HTRs to a different assembly house
Full production before December 2004