Relativistic Beaming

Consider a source of radiation that emits isotropically in its own rest frame S_*. If the source is moving with velocity v in the x-direction of an inertial frame S, the flux will not be isotropic in S but will rather be concentrated towards the forward direction. This is called relativistic beaming and is very important in high energy astrophysics.

1. (a) A photon with frequency ω_* travels with angle θ_* from the x-direction in the frame S_*. Find the frequency ω and angle θ of travel from the x-axis in the frame S. Show that the angle is given by

$$ \cos \theta = \frac{k_x}{|k|} = \frac{\cos \theta_* + v}{1 + v \cos \theta_*} $$

or (which is simpler for taking the small angle limit)

$$ \tan \theta = \frac{k_y}{k_x} = \frac{\sin \theta_*}{\gamma (\cos \theta_* + v)} $$

where k is the photon wavevector, and we use units with $c = 1$. (Note that one can find the inverse relations by interchanging θ and θ_* and replacing v by $-v$.)

(b) To what angle θ does $\theta_* = \pi/2$ correspond? What angle θ_* corresponds to $\theta = \pi/2$?

2. Suppose two photons are emitted at angles θ and $\theta + \delta \theta$ from the moving source, with a time separation Δt_e, and suppose both photons reach a distant observer at rest in the frame S. (Since the observer is distant the angle difference $\delta \theta$ can be neglected.) Show that the time separation of observation of the two photons is given by

$$ \Delta t_o = (1 - v \cos \theta) \Delta t_e $$

where both times are measured in the frame S.

3. (a) The specific intensity I_ω at frequency ω is defined by $I_\omega = dE/d\omega dt d\Omega$, where dE is the energy in the frequency range $d\omega$ passing in a time dt through a surface subtending a solid angle $d\Omega$. Show that the ratio of specific intensities seen in the two frames is

$$ \frac{I_\omega}{I_{\omega_*}} = (\omega/\omega_*)^3 \left(\gamma (1 - v \cos \theta)\right)^{-3} $$

where γ is the usual relativistic gamma factor $(1 - v^2)^{-1/2}$. [Hint: Compare the radiation energy that emerges between the angles θ_* and $\theta_* + d\theta_*$ during a time dt_* in the frame S_* with the corresponding energy received by the observer in the frame S.]

(b) Show that the forward intensity ratio is given by

$$ \frac{I_\omega(0)}{I_{\omega_*}} = \gamma^3 (1 + v)^3 $$

In the limit where v is very close to the speed of light, this memorably becomes $8\gamma^3$. Note that for $\gamma = 10$ this is already of order 10^4! Sources beamed toward the viewer can appear much brighter than in their rest frame.