A general solution is a linear combination

\[N(r, t) = \sum_n A_n \exp(\mu_n t) \sin(k_n r)/r, \]

where \(A_n \) are arbitrary constants, and \(\mu_n \) and \(k_n \) are determined by the diffusion constant \(\kappa \), the production rate \(\lambda \), the radius of the sphere \(R \) and the integer \(n \). See the solution to problem 5 in hw5, where \(k_n \) is denoted \(\sqrt{|\nu|} \).

At time \(t = 0 \) we have

\[N(r, t) = \sum_n A_n \sin(k_n r)/r = \begin{cases} \bar{N} & \text{if } r < a \\ 0 & \text{otherwise} \end{cases} \]

To pick off the coefficients \(A_n \), I suggest you multiply both sides of this equation by \(r \sin(k_m r) \) and integrate over \(r \) from 0 to \(R \). On the left hand side you’ll get \(A_m R/2 \) since

\[\int_0^R dr \sin(k_n r) \sin(k_m r) = (R/2)\delta_{mn}. \]

(This is the same as (15.3) in the textbook, with \(L \) replaced by \(R \) and with the range of integration cut in half.) On the right hand side you’ll have an integral that needs to be evaluated.