1. **Cooper Pair Size Estimate**

Using the Cooper wavefunction derived in class, show that the expectation value of the Cooper pair radius squared:

\[
\langle \rho^2 \rangle = \frac{\int \lvert \psi(r_1 - r_2) \rvert^2 (r_1 - r_2)^2 \, d(r_1 - r_2)}{\int \lvert \psi(r_1 - r_2) \rvert^2 \, d(r_1 - r_2)}
\]

is given by,

\[
\langle \rho^2 \rangle = \frac{4}{3} \frac{\hbar^2 v_F^2}{W^2},
\]

where \(W = -2 \hbar \omega_c e^{-2NV} \) is the binding energy of the Cooper pair, and \(v_F \) is the Fermi velocity. If we say that \(W \sim k_B T_c \), then estimate the size of a Cooper pair for Nb (\(v_F = 1.38 \times 10^6 \text{ m/s} \)).

Hints: Use the complex exponential form of the Cooper wavefunction and express factors of \(r \) in terms of the gradient on \(k \). It is also useful to note that

\[
\nabla_k \nabla_k' \delta(k - k') = \delta(k - k') \nabla_k \nabla_k'.
\]

Note that the \(k \)-gradients will act upon the \(g_k \) and \(g_{k'} \).

After converting the sums on \(k \) to integrals on energy, it useful to make the same approximations that we used in deriving the Cooper pairing energy, namely that the density of states, and the energy, are approximately constant in the energy range over which the attractive pairing interaction is active.

2. **Equivalence of Creation/Annihilation wavefunctions and Slater Determinants**

We want to show that the creation/annihilation operator format for a wavefunction is entirely equivalent to the (more laborious) Slater determinant version of the wave function. Consider the two-particle Cooper pairing wavefunction in the creation/annihilation operator format:

\[
\left| \psi_0 \right> = \sum_{k > k_F} g_k c_{k \uparrow}^{+} c_{-k \downarrow}^{+} \left| F \right>,
\]

where \(\left| F \right> \) represents the filled Fermi sea. Show that this is equivalent to the form of the Cooper pair wavefunction that we derived in class, Tinkham Eq. (3.1), by summing the two 2x2 Slater determinants with the equal coefficients \(g_k \) and \(g_{-k} \).