The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes superconductivity from many other states of matter. Here we discuss some simple phenomenological approaches to describing the Meissner effect quantitatively.

The London equations

The brothers F. and H. London wrote down two simple equations which conveniently incorporate the electrodynamic response of a superconductor. These equations describe the microscopic electric (E) and magnetic (h) fields inside a superconductor. Here h is the microscopic flux density, and B will be the macroscopic averaged flux density. See Appendix 2 (p. 435 of Tinkham).

To derive the first London equation, think of the net force acting on the charge carrier in a normal metal:

$$\frac{d(mv)}{dt} = eE - \frac{mv}{\tau}$$

(Note that this is a LOCAL equation. It assumes that only the local electric field influences the drift velocity. As such, it requires the mean free path be less than the magnetic penetration depth, $l_{\text{MFP}} < \lambda_s$). Here v is the average or "drift" velocity of the charge carrier of charge e, m is its mass, E is the local electric field, and τ is a phenomenological scattering time for the carrier which describes how long it takes the scattering to bring the velocity of the carrier to zero. In a normal metal in steady state, the drift velocity achieves a constant value, meaning that the electric force and scattering forces balance, leading to:

$$\langle v \rangle = \frac{eE}{m\tau}$$

If there are n carriers per unit volume, the current density can be written as $J = ne\langle v \rangle$, so

$$J = \frac{ne^2\tau}{m} E$$

which is Ohm's Law ($J = \sigma E$) with the conductivity $\sigma = ne^2\tau/m$.

To model a superconductor, we shall suppose that there is a density of superconducting electrons, n_s, and they do not have their velocities reduced to zero by means of scattering. (See Tinkham p. 5 for why $\tau \to \infty$ does not give perfect conductivity) From the above equation, this means that the electrons will accelerate in an applied electric field! $m \frac{\partial v}{\partial t} = eE$, giving rise to the first London equation:

$$\frac{\partial J_s}{\partial t} = \frac{n e^2}{m} E$$

or

$$\frac{\partial (\Lambda J_s)}{\partial t} = E$$

Strictly speaking, this equation only holds for ac currents and electric fields, since it predicts very large currents for large times at dc. The first London equation says that in order to create an alternating current (i.e. a non-zero $\partial J_s / \partial t$) it is necessary to establish an electric field in the superconductor. This has implications for the finite-frequency losses in superconductors. If any un-paired electrons (quasiparticles) are around, they will be accelerated by the electric field and cause Ohmic dissipation. Hence a superconductor has a small but finite dissipation when illuminated with a finite frequency electromagnetic wave at temperatures above zero Kelvin. Superconductors are only dissipation-less at zero frequency, or at finite frequency at zero temperature (for a fully-gapped superconductor).

We define a new quantity, Λ as,

$$\frac{\partial J_s}{\partial t} = \frac{1}{\Lambda} E = -\frac{1}{\mu_0 \gamma_s} E$$
where $\Lambda = \mu_0 \lambda_L^2 = m/(n_e e^2)$. We have also introduced an important new length scale, the (London) magnetic penetration depth, λ_L. It is defined as,

$$\lambda_L = \sqrt{\frac{m}{\mu_0 n_e e^2}}.$$

To get a deeper insight into the first London Equation and this new length scale, start with the Maxwell equation for the microscopic fields (Ampere’s Law),

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \frac{\partial \vec{D}}{\partial t},$$

and ignoring the displacement current (this is usually appropriate in superconductors because we often consider only frequencies $\omega < 2\Delta$), take the time derivative of both sides and use the first London equation, to obtain,

$$\nabla \times \frac{\partial \vec{B}}{\partial t} = \mu_0 \frac{\partial \vec{J}}{\partial t} = \frac{1}{\lambda_L^2} \vec{E}.$$

Now take the curl of both sides,

$$\nabla \times \nabla \times \frac{\partial \vec{B}}{\partial t} = \frac{1}{\lambda_L^2} \nabla \times \vec{E}.$$

The electric field curls around the time-varying magnetic field (Faraday’s law)

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

to get

$$\nabla \times \nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{1}{\lambda_L^2} \frac{\partial \vec{B}}{\partial t}.$$

Integrating both sides with respect to time yields

$$\nabla \times \nabla \times \vec{B} + \frac{1}{\lambda_L^2} \vec{B} = 0.$$

Now use the vector identity

$$\nabla \times \nabla \times \vec{B} = \nabla(\nabla \cdot \vec{B}) - \nabla^2 \vec{B}$$

And the fact that $\nabla \cdot \vec{B} = 0$ to arrive at

$$\nabla^2 \vec{B} = \frac{1}{\lambda_L^2} \vec{B}.$$