Lecture 9. Momentum Representation, Change Basis, More Examples, Wednesday, Sept. 21

Work out the momentum operator in the x-representation following the textbook.

The eigenvalues of \hat{p} are also continuous and span a one-dimensional real axis. Eigenstates $|p\rangle$ can be chosen as a basis in the Hilbert space,

$$\langle p| p' \rangle = \lambda \delta(p - p') ,$$

$$\int \frac{dp}{\lambda} |p \rangle \langle p| = 1 ,$$

where λ can be chosen as anything. It is 1 in JJS; I usually choose $2\pi\hbar$.

The momentum eigenstates can be expressed in $|x\rangle$ basis. The eigen-equation in x-rep is well-known,

$$-i\hbar \frac{d}{dx} \langle x|p \rangle = p \langle x|p \rangle$$

and the solution is

$$\langle x|p \rangle = e^{ipx/\hbar} .$$

We note that

$$\int_{-\infty}^{\infty} e^{ikx} dx = 2\pi \delta(x) .$$

Momentum representation: choose $|p\rangle$ as a basis, we have the momentum space wave function

$$\psi(p) = \langle p|\psi \rangle .$$

It can be shown that the momentum space wave function is related to the coordinate space wave function by simple Fourier transformation.

The position operator in the momentum representation: \hat{x} is the generator of translation in the momentum space,

$$\hat{x} = i\hbar \frac{d}{dp} .$$

Gaussian wave packet.

$$\langle x|\alpha \rangle = \frac{1}{\pi^{1/4}\sqrt{d}} \exp\left(ikx - x^2/2d^2\right)$$
Plot its probability density. Calculate the expectation value $\langle \alpha | x | \alpha \rangle = 0$ because of the symmetry. On the other hand $\langle \alpha | x^2 | \alpha \rangle = d^2/2$, so one has, $\Delta x = d/\sqrt{2}$. Likewise, $\Delta p = \hbar/\sqrt{2}d$. Therefore, $\Delta x \Delta p = \hbar/2$.

Review harmonic oscillator, one-dimensional square well potential problems.

Change of Basis: Consider two bases, $|i\rangle$ and $|j\rangle$. The two bases are related by a unitary transformation $|i'\rangle = U|i\rangle$

(92)

where $U^\dagger U = U U^\dagger = 1$. If we insert $\sum_j |j\rangle \langle j| = 1$, then we have,

$$|i'\rangle = \sum_j |j\rangle \langle j| U|i\rangle = \sum_j |j\rangle U_{ji}$$

(93)

where $U_{ij} = \langle i| U|j\rangle$. We can write the above equation in a matrix form,

$$\begin{pmatrix} |1\rangle', |2\rangle', \ldots \end{pmatrix} = \begin{pmatrix} |1\rangle, |2\rangle, \ldots \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & \ldots \\ U_{21} & U_{22} & \ldots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

(94)

where the basis vectors appear as a row matrix.

Suppose a vector $|\psi\rangle = \sum_i c_i |i\rangle$ in the old basis, and we can represent $|\psi\rangle$ as a column matrix of c_i, or

$$|\psi\rangle = \begin{pmatrix} |1\rangle, |2\rangle, \ldots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix}$$

(95)

The same vector can be expressed as $|\psi\rangle = \sum_i c'_i |i'\rangle$ in the new basis. Then it is easy to see that

$$c'_i = \sum_j U^{-1}_{ij} c_j$$

(96)

or we can replace the U^{-1} by U^\dagger because of the unitarity.

**In some textbooks, the U here is denoted by U^{-1}.

Consider also an operator $O = \sum_{ij} O_{ij} |i\rangle \langle j|$, which can be written also as a matrix form,

$$O = \begin{pmatrix} |1\rangle, |2\rangle, \ldots \end{pmatrix} \begin{pmatrix} O_{11} & O_{12} & \ldots \\ O_{21} & O_{22} & \ldots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} |1\rangle \\ |2\rangle \end{pmatrix}$$

(97)
From this, it is easy to show that

\[O'_{ij} = \sum_{kl} U^\dagger_{ik} O_{kl} U_{lj} \]

or simply \(O' = U^\dagger O U \) in the matrix sense.

The trace of an matrix is independent of bases.

Suppose we have a matrix \(O \), and we diagonalize it in the old basis \(|i\rangle \). Suppose all eigenvectors are \(|\lambda_n\rangle \). Then in the \(|\lambda_n\rangle \) basis, the matrix is diagonal with eigenvalue \(\lambda_n \). The transformation matrix from the old to the new basis is \(|\lambda_i\rangle = U|i\rangle \). Thus we can write,

\[O = U^\dagger O_D U \]

where \(O_D \) is the diagonal matrix, and \(U \) is a matrix whose columns are formed by eigenvectors.

Example of \(\sigma_y \).

If two observables are related by unitary transformation \(A, B = UAU^{-1} \), we say \(A \) and \(B \) are unitary equivalent observables. It is easy to see that \(A \) and \(B \) have exactly the same eigenvalues, and their eigenstates are unitary transformation of each other. \(S_x \) and \(S_y \) and \(S_z \) are unitary equivalent observables.

Discuss homework problems. Solve new problems, time permits.

Hints: 1.21: Start with the normalized wave function in the square well potential.

\[\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} \]

where \(n = 1, 2, ..., \). In the x-representation, \(p = -i\hbar d/dx \).

1.26: Consider \(S_x \) as the old basis. Diagonalize \(S_x \) in the old basis. Express \(U \) in the matrix form.

1.29: Consider 1D case, multi-D is easy because \([x_i, x_j] = 0 \). Show it is true for a monomial \(p^n \). Classical Poisson bracket definition (1.6.48).

1.33: a) Insert \(\int dx |x\rangle \langle x| = 1 \) and use \(ixe^{ip} = d(e^{ixp})/dp \) b) Take the matrix element of the exponential operator between \(\langle x| \) and \(|p\rangle \), and see what you get!