a) \[L = \frac{1}{2} m [\dot{r}^2 + (r\dot{\phi})^2] + mG/r \]
\[(A1) \]

b) \[\ddot{r} = -\frac{mG}{r^2} + r\dddot{\phi} \]
\[(A2) \]

\[r\dddot{\phi} + 2\dddot{r} = 0 \]
\[(A3) \]

c) \[\omega^2 = \frac{mG}{R^3} \]
\[(A4) \]

d) \[\dddot{\rho} = 3\omega^2 \rho + 2\omega R\dddot{\phi} \]
\[\dddot{\psi} + 2(\omega/R)\dddot{\rho} = 0 \]
\[(A5) \]

\[(A6) \]
e) Integrating (A6) and using initial conditions gives

\[\dddot{\psi} + 2(\omega/R)\dddot{\rho} = 0 . \]
\[(A7) \]

Putting this in (A5) gives

\[\dddot{\rho} = -\omega^2 \rho . \]

Taking into account the initial condition, the solution for \(\rho \) is

\[\rho = -\frac{V}{\omega} \sin \omega t . \]
\[(A8) \]

Correspondingly, \(\psi \) can be found by putting (A8) in (A7) and integrating. The result is

\[\psi = \frac{2V}{\omega R} (1 - \cos \omega t) . \]
\[(A9) \]

Note that when \(t = \tau = 2\pi/\omega \) (one period later), then \(\rho(\tau) = \psi(\tau) = 0 \). Also

\[\dddot{\psi}(\tau) = -2(\omega/R) \dddot{\rho}(\tau) = 0 . \]