So, in terms of the variable \(z \), the rays oscillate about the axis of the Selfoc. The rate (wave number) in terms of \(z \) for oscillation depends on the amplitude because of the relation

\[
\frac{\pi}{n_0^2 - 2K} = \frac{\pi}{n_0^2 - 2K} \cdot Z
\]

It is easy to check that

\[
p_x = \dot{x} = \omega A_x \cos (\omega z + \phi_x) \text{ etc.} \Rightarrow
\]

\[
h = \frac{p_x^2 + p_y^2}{2} + \frac{\omega^2}{2} (x^2 + y^2) = \frac{\omega^2}{2} (A_x^2 + A_y^2) \Rightarrow
\]

\[
\left[n_0^2 - 2K \right]^{-1/2} = \left[n_0^2 - \omega^2 (A_x^2 + A_y^2) \right]^{-1/2}
\]