This equation is of the form
\[\ddot{\theta} + \lambda^2 \dot{\theta} = 0 \]
with

\[-\lambda^2 = \frac{1}{ma^2} \left[mg - ma^2 \omega^2 \right] = \gamma \]

\[-\lambda^2 = \left[\frac{g}{a} - \omega^2 \right] = \gamma \]

\[\lambda = \left[\frac{g}{a} - \omega^2 \right]^{1/2} \]

As Figure 9.10 shows, \(\theta = 0 \) is no longer a minimum for \(V(\theta) \) if \(\omega^2 > \frac{g}{a} \). Then \(V(\theta) \) has the shape \(\checkmark \) unstable equilibria

\[-\pi \]
\[\theta \]
\[\pi \]

Two stable equilibria.