Using these coordinates, we have:

\[\mathbf{P}_b = \mathbf{P}_h + \frac{\mathbf{b}_f}{\mathbf{v}} \]

where \(\mathbf{b}_f \) is the distance between anchor points.

Then, we have the locations of the anchored and vertex (points) of the triangle and the locations of the respective triangle. Let \(\mathbf{P}_b \) with \(b = 0, 1, \ldots \), the location of center of the space fixed vectors with \(\mathbf{P}_b \). Select a space fixed set of axes as shown below.

\[\frac{12}{2} = \frac{12}{2} \]

Therefore:

\[I_{33} = \frac{12}{2} = I + I \]

and observe:

\[I_{33} = \int_{\Delta} \rho_1 (x, y) \left(x^2 + y^2 \right) \, d\sigma \]

Next, \(\gamma \) cont. Draft 34 cont.