Connected if the other is, and vice versa. But from (1.2.37) we have

$$\mu = (x-1)^2/4 - (1/4).$$

Evidently, μ is unchanged under the substitution $Y \leftrightarrow 1-Y$, which amounts to

\[
\begin{align*}
\Re Y \rightarrow 1 - \Re Y \\
\Im Y \rightarrow -\Im Y
\end{align*}
\]

Thus, in both cases the dynamic aperture in the w plane is the same. In particular, both will be connected or disconnected.

Therefore, they will both be connected or disconnected in the z plane. Therefore the Mandelbrot set is invariant under the symmetry (a). Next take the complex conjugate of both sides of (1.2.15) to get

$$z_{n+1}^* = \bar{Y} \bar{z}_n (1 - 2\bar{z}).$$