Goldstein 9.7

Part (a)

\(F_1(q, Q, t) \rightarrow F_2(q, P, t) \)

\[-P_i = \frac{\partial F_1}{\partial Q_i}\] \hspace{1cm} (1)

\[F_2(q, P, t) = F_1(q, Q, t) + P_i Q_i\] \hspace{1cm} (2)

\(F_1(q, Q, t) \rightarrow F_3(p, Q, t) \)

\[p_i = \frac{\partial F_1}{\partial q_i}\] \hspace{1cm} (3)

\[F_3(p, Q, t) = F_1(q, Q, t) - p_i q_i\] \hspace{1cm} (4)

\(F_1(q, Q, t) \rightarrow F_4(p, P, t) \)

\[p_i = \frac{\partial F_1}{\partial q_i}\] \hspace{1cm} (5)

\[P_i = -\frac{\partial F_1}{\partial Q_i}\] \hspace{1cm} (6)

\[F_4(p, P, t) = F_1(q, Q, t) - p_i q_i + P_i Q_i\] \hspace{1cm} (7)

\(F_2(q, P, t) \rightarrow F_3(p, Q, t) \)

\[p_i = \frac{\partial F_2}{\partial q_i}\] \hspace{1cm} (8)

\[Q_i = \frac{\partial F_2}{\partial P_i}\] \hspace{1cm} (9)

\[F_3(p, Q, t) = F_2(q, P, t) - p_i q_i - P_i Q_i\] \hspace{1cm} (10)

\(F_2(q, P, t) \rightarrow F_4(p, P, t) \)

\[p_i = \frac{\partial F_2}{\partial q_i}\] \hspace{1cm} (11)

\[F_4(p, P, t) = F_2(q, P, t) - p_i q_i\] \hspace{1cm} (12)
\[F_3(p, Q, t) \rightarrow F_4(p, P, t) \]

\[P_i = -\frac{\partial F_3}{\partial Q_i} \]
\[F_4(p, P, t) = F_3(p, Q, t) + P_i Q_i \]

\textbf{Part (b)}

For an identity transformation, \(F_2 = q_i P_i \) and by equation (7), the type 4 generating function is

\[F_4(p, P, t) = F_2(q, P, t) - p_i q_i \]
\[= q_i P_i - p_i q_i \]
\[= 0 \quad \text{as} \quad p_i = \frac{\partial F_2}{\partial q_i} = P_i \]

For an exchange transformation, \(F_1 = q_i Q_i \) and by equation (4), the type 3 generating function is

\[F_3(p, Q, t) = F_1(q, Q, t) - p_i q_i \]
\[= q_i Q_i - p_i q_i \]
\[= 0 \quad \text{as} \quad p_i = \frac{\partial F_1}{\partial q_i} = Q_i \]

\textbf{Part (c)}

Consider a type 2 generating function \(F_2(q, P, t) \) of the old coordinates and the new momenta, of the form

\[F_2(q, P, t) = f_i(q_1, \ldots, q_n; t) P_i - g(q_1, \ldots, q_n; t) \]

where \(f_i \)'s are a set of independent functions, and \(g_i \)'s are differentiable functions of the old coordinates and time. The new coordinates \(Q_i \) are given by

\[Q_i = \frac{\partial F_2}{\partial P_i} = f_i(q_1, \ldots, q_n; t) \]

In particular, the function

\[f_i(q_1, \ldots, q_n; t) = R_{ij} q_j \]

where \(R_{ij} \) is the \((i, j) \)-th element of a \(N \times N \) orthogonal matrix, generates an orthogonal transformation of the coordinates. Now,

\[p_j = \frac{\partial F_2}{\partial q_j} = \frac{\partial f_i}{\partial q_j} P_i - \frac{\partial g}{\partial q_j} = R_{ij} P_i - \frac{\partial g}{\partial q_j} \]

This equation can be written in matrix form, as

\[p = \frac{\partial f}{\partial q} P - \frac{\partial g}{\partial q} \]
where \(p \) denotes the \(N \times 1 \) column vector \((p_1, \ldots, p_N)^T\), \(\partial g/\partial q \) denotes the \(N \times 1 \) column vector \((\partial g/\partial q_1, \ldots, \partial g/\partial q_n)^T\), and \(\frac{\partial f}{\partial q} \) denotes the \(N \times N \) matrix with entries

\[
\left(\frac{\partial f}{\partial q} \right)_{ij} = \frac{\partial f_i}{\partial q_j} = R_{ij}
\]

From (22), the new momenta are given by

\[
P = \left(\frac{\partial f}{\partial q} \right)^{-1} \left(p + \frac{\partial g}{\partial q} \right)
\]

\[
= R^{-1} \left(p + \frac{\partial g}{\partial q} \right)
\]

\[
= R^{-1} (p + \nabla_q g)
\]

As \(R \) is an orthogonal matrix, \(RR^T = R^T R = I \), so \(R^{-1} = R^T \) is also an orthogonal transformation.

This gives the required result: the new momenta are given by the orthogonal transformation \((R^{-1}) \) of an \(n \)-dimensional vector \((p + \nabla_q g)\), whose components are the old momenta \((p)\) plus a gradient in configuration space \((\nabla_q g)\).

Goldstein 9.25

Part (a)

The given Hamiltonian is

\[
H = \frac{1}{2} \left(\frac{1}{q^2} + p^2 q^4 \right)
\]

The equation of motion for \(q \) is

\[
\dot{q} = \frac{\partial H}{\partial p} = pq^4
\]

Part (b)

Suppose we let \(Q^2 = 1/q^2 \) and \(P^2 = p^2 q^4 \). Then, \(Q = \pm 1/q \) and \(P = \pm pq^2 \). Now,

\[
\{Q, P\} = \{\pm 1/q, \pm pq^2\}
\]

\[
= \{q^{-1}, pq^2\}
\]

\[
= \{q^{-1}, p\} q^2 + p\{q^{-1}, q^2\}
\]

\[
= \left(\frac{\partial q^{-1}}{\partial q} \frac{\partial p}{\partial p} - \frac{\partial q^{-1}}{\partial p} \frac{\partial p}{\partial q} \right) q^2 + p \times 0
\]

\[
= \left(-\frac{1}{q^2} \right) q^2
\]

\[
= -1
\]
So, the signs on both Q and P cannot be identical. We take

$$Q = -\frac{1}{q}$$
$$P = pq^2$$

which is a valid canonical transformation. This gives the Hamiltonian,

$$H(Q, P) = \frac{1}{2}(P^2 + Q^2)$$

The equations of motion are

$$\dot{Q} = \frac{\partial H}{\partial P} = P$$
$$\dot{P} = -\frac{\partial H}{\partial Q} = -Q$$

So, $\ddot{Q} + Q = 0$, the solution to which is of the form $Q = A \cos t + B \sin t$. This gives $P = \dot{Q} = B \cos t - A \sin t$. Now,

$$q = -\frac{1}{Q} = -(A \cos t + B \sin t)^{-1}$$
$$p = PQ^2 = (B \cos t - A \sin t)(A \cos t + B \sin t)^2$$

so,

$$\dot{q} = (A \cos t + B \sin t)^{-2}(-A \sin t + B \cos t)$$

and hence

$$pq^4 = (B \cos t - A \sin t)(A \cos t + B \sin t)^2(A \cos t + B \sin t)^{-4} = (B \cos t - A \sin t)(A \cos t + B \sin t)^{-2} = \dot{q}$$

So, the solution to the transformed equation for Q satisfies the original equation of motion for q.

Problem 1

Part (a)

$$\{X, P_x\} = \{x + \epsilon, p_x\} = \{x, p_x\} = 1$$

$$\{Y, P_y\} = \{y, p_x\} = 1$$
\[\{Z, P_x\} = \{z, p_x\} \]
\[= 1 \quad (40) \]
\[\{X, P_y\} = \{X, P_x\} = \{Y, P_x\} = \{Z, P_x\} = \{Z, P_y\} = 0 \quad (41) \]
\[\{X, X\} = \{Y, Y\} = \{Z, Z\} = \{P_x, P_x\} = \{P_y, P_x\} = \{P_z, P_z\} = \{P_y, P_y\} = \{P_z, P_x\} = 0 \quad (42) \]

So, this is a canonical transformation. It corresponds to a translated canonical coordinate system (translation along the \(x\)-direction in phase space).

\[\frac{dX}{d\epsilon} = [X, P_x] = 1 \quad (43) \]

So \(P_x\) is the generator of the canonical transformation.

Part (b)

\[\{X, P_z\} = \{x \cos \epsilon + y \sin \epsilon, p_x \cos \epsilon + p_y \sin \epsilon\} \]
\[= \cos^2 \epsilon \{x, p_x\} + \sin^2 \epsilon \{y, p_y\} \]
\[= 1 \quad (44) \]

\[\{Y, P_y\} = \{-x \sin \epsilon + y \cos \epsilon, -p_x \sin \epsilon + p_y \cos \epsilon\} \]
\[= \sin^2 \epsilon \{x, p_x\} + \cos^2 \epsilon \{y, p_y\} \]
\[= 1 \quad (45) \]

\[\{Z, P_z\} = \{z, p_z\} \]
\[= 1 \quad (46) \]

Using properties of the Poisson Bracket, we also have

\[\{X, P_y\} = \{X, P_x\} = \{Y, P_x\} = \{Z, P_x\} = \{Z, P_y\} = 0 \quad (47) \]
\[\{X, X\} = \{Y, Y\} = \{Z, Z\} = \{P_x, P_x\} = \{P_y, P_z\} = \{P_z, P_z\} = \{P_y, P_z\} = \{P_z, P_x\} = 0 \quad (48) \]

So, this is a canonical transformation. It corresponds to a rotation about the \(z\)-axis in phase space.

\[\frac{dX}{d\epsilon} = -x \sin \epsilon + y \cos \epsilon \quad (49) \]

whereas

\[\{X, L_z\} = \{x \cos \epsilon + y \sin \epsilon, xp_y - yp_x\} = x \sin \epsilon - y \cos \epsilon \quad (50) \]

So,

\[\frac{dX}{d\epsilon} = \{X, -L_z\} \quad (51) \]

Therefore, \(-L_z\) is the generator of the canonical transformation.
Part (c)

\[\{X, P_x\} = \{x, p_x + \epsilon\} = 1 \] \hspace{1cm} (52)

\[\{Y, P_y\} = \{y, p_y\} = 1 \] \hspace{1cm} (53)

\[\{Z, P_z\} = \{z, p_z\} = 1 \] \hspace{1cm} (54)

Using properties of the Poisson Bracket, we also have

\[\{X, P_y\} = \{X, P_z\} = \{Y, P_x\} = \{Y, P_z\} = \{Z, P_x\} = \{Z, P_y\} = 0 \] \hspace{1cm} (55)

\[\{X, X\} = \{Y, Y\} = \{Z, Z\} = \{P_x, P_x\} = \{P_y, P_x\} = \{P_z, P_x\} = \{P_y, P_y\} = \{P_y, P_z\} = \{P_z, P_x\} = 0 \] \hspace{1cm} (56)

So, this is a canonical transformation. It corresponds to a translation along the \(p_x \) direction in phase space. Now,

\[\{P_x, -X\} = -\left(\frac{\partial P_x}{\partial q_i} \frac{\partial X}{\partial p_i} - \frac{\partial P_x}{\partial p_i} \frac{\partial X}{\partial q_i} \right) = 1 = \frac{dP_x}{d\epsilon} \] \hspace{1cm} (57)

Therefore, \(-X\) is the generator of the canonical transformation.

Part (d)

\[\{X, P_x\} = \{(1 + \epsilon)x, (1 + \epsilon)^{-1}p_x\} = 1 \] \hspace{1cm} (58)

\[\{Y, P_y\} = \{(1 + \epsilon)y, (1 + \epsilon)^{-1}p_y\} = 1 \] \hspace{1cm} (59)

\[\{Z, P_z\} = \{(1 + \epsilon)z, (1 + \epsilon)^{-1}p_z\} = 1 \] \hspace{1cm} (60)

Using properties of the Poisson Bracket, we also have

\[\{X, P_y\} = \{X, P_z\} = \{Y, P_x\} = \{Y, P_z\} = \{Z, P_x\} = \{Z, P_y\} = 0 \] \hspace{1cm} (61)

\[\{X, X\} = \{Y, Y\} = \{Z, Z\} = \{P_x, P_x\} = \{P_y, P_x\} = \{P_z, P_x\} = \{P_y, P_y\} = \{P_y, P_z\} = \{P_z, P_x\} = 0 \] \hspace{1cm} (62)
So, this is a canonical transformation. It is a scaling transformation, which preserves the volume element in phase space. Suppose \(g \) is the generator of the scaling transformation. Then,

\[
\frac{\partial X}{\partial \epsilon} = x = [X, g] = [(1 + \epsilon) x, g]
\]

which implies

\[
\frac{x}{1 + \epsilon} = [x, g] = \frac{\partial x}{\partial x} \frac{\partial g}{\partial p_x} - \frac{\partial x}{\partial p_x} \frac{\partial g}{\partial x}
\]

that is,

\[
\frac{x}{1 + \epsilon} = \frac{\partial g}{\partial p_x}
\]

the solution to which is

\[
g = \frac{x p_x}{1 + \epsilon} + f(y, z, p_y, p_z)
\]

As \(dY/d\epsilon = y = [(1 + \epsilon) y, g] \) and \(dZ/d\epsilon = z = [(1 + \epsilon) z, g] \), following a similar argument for \(Y \) and \(Z \) (or by symmetry) we get

\[
g = \frac{x p_x}{1 + \epsilon} + \frac{y p_y}{1 + \epsilon} + \frac{z p_z}{1 + \epsilon} + \text{constant}
\]

as the generator of the scaling transformation.

Problem 2

As \(\eta \) is a canonical transformation, we have

\[
\frac{\partial \eta_i}{\partial \epsilon} = \{\eta_i, g\}
\]

So,

\[
\frac{\partial H}{\partial \epsilon} = \frac{\partial H}{\partial \eta_i} \frac{\partial \eta_i}{\partial \epsilon} = \frac{\partial H}{\partial \eta_i} \{\eta_i, g\} = \frac{\partial H}{\partial \eta_i} \frac{\partial \eta_i}{\partial \xi_j} J_{jk} \frac{\partial g}{\partial \xi_k} \quad \text{(as \(\xi \) is a canonical transformation)}
\]

\[
= \frac{\partial H}{\partial \eta_i} \frac{\partial \eta_i}{\partial \eta_j} J_{jk} \frac{\partial g}{\partial \eta_k} \quad \text{(as Poisson Brackets are invariant under canonical transformations)}
\]

\[
= \frac{\partial H}{\partial \eta_i} \delta_{ij} J_{jk} \frac{\partial g}{\partial \eta_k} = \frac{\partial H}{\partial \eta_i} J_{ij} \frac{\partial g}{\partial \eta_j} = \{H, g\} = -\dot{g}
\]

But since \(H \) is conserved, \(\frac{\partial H}{\partial \epsilon} = 0 \) and hence \(\dot{g} = 0 \). Therefore, \(g \) is conserved.
Problem 3

The quantity \(\Delta \), which was found to be an invariant of the system, can be expressed in terms of the canonical coordinates \(x, y, p_x, p_y \) as

\[
\Delta(x, y, p_x, p_y) = \frac{1}{2m}(p_x^2 - p_y^2) + \frac{1}{2}m\omega^2(x^2 - \alpha y^2) \tag{70}
\]

As \(\Delta \) is the conserved generator of a family of canonical transformations parametrized by an infinitesimal parameter \(\epsilon \), we must have

\[
\delta x = \epsilon \{ x, \Delta \} \tag{71}
\]
\[
\delta y = \epsilon \{ y, \Delta \} \tag{72}
\]
\[
\delta p_x = \epsilon \{ p_x, \Delta \} \tag{73}
\]
\[
\delta p_y = \epsilon \{ p_y, \Delta \} \tag{74}
\]

We consider each condition separately below.

\[
\delta x = \epsilon \{ x, \Delta \} = \epsilon \{ x, \frac{1}{2m}(p_x^2 - p_y^2) + \frac{1}{2}m\omega^2(x^2 - \alpha y^2) \} = \epsilon \{ x, \frac{p_x^2}{2m} \} = \frac{ep_x}{m} \tag{76}
\]
\[
\delta y = \epsilon \{ y, \Delta \} = \epsilon \{ y, \frac{1}{2m}(p_x^2 - p_y^2) + \frac{1}{2}m\omega^2(x^2 - \alpha y^2) \} = \epsilon \{ y, -\frac{p_y^2}{2m} \} = -\frac{ep_y}{m} \tag{77}
\]
\[
\delta p_x = \epsilon \{ p_x, \Delta \} = \epsilon \{ p_x, \frac{1}{2m}(p_x^2 - p_y^2) + \frac{1}{2}m\omega^2(x^2 - \alpha y^2) \} = \epsilon \{ p_x, \frac{1}{2}m\omega^2x^2 \} = -em\omega^2x \tag{78}
\]
\[
\delta p_y = \epsilon \{ p_y, \Delta \} = \epsilon \{ p_y, \frac{1}{2m}(p_x^2 - p_y^2) + \frac{1}{2}m\omega^2(x^2 - \alpha y^2) \} = \epsilon \{ p_y, -\frac{1}{2}m\omega^2\alpha y^2 \} = em\omega^2\alpha y \tag{79}
\]
Now, let $\epsilon = \delta \theta$ where θ is a parameter. Then, the above equations become

\[
\begin{align*}
\frac{dx}{d\theta} &= \frac{p_x}{m} \\
\frac{dy}{d\theta} &= -\frac{p_y}{m} \\
\frac{dp_x}{d\theta} &= -m\omega^2 x \\
\frac{dp_y}{d\theta} &= m\omega^2 y
\end{align*}
\]

So,

\[
\begin{align*}
\frac{d^2 x}{d\theta^2} + \omega^2 x &= 0 \\
\frac{d^2 y}{d\theta^2} + \omega^2 \alpha y &= 0
\end{align*}
\]

The solutions to which are

\[
\begin{align*}
x &= A \cos(\omega \theta) + B \sin(\omega \theta) \\
y &= C \cos(\omega \sqrt{\alpha} \theta) + D \sin(\omega \sqrt{\alpha} \theta)
\end{align*}
\]

and correspondingly

\[
\begin{align*}
p_x &= -m\omega A \sin(\omega \theta) + m\omega B \cos(\omega \theta) \\
p_y &= m\omega \sqrt{\alpha} C \sin(\omega \sqrt{\alpha} \theta) - m\omega \sqrt{\alpha} D \cos(\omega \sqrt{\alpha} \theta)
\end{align*}
\]

Using the subscript 0 to denote the “initial” coordinates and momenta, we have

\[
\begin{align*}
x_0 &= A \\
y_0 &= C \\
p_{x0} &= m\omega B \\
p_{y0} &= -m\omega \sqrt{\alpha} D
\end{align*}
\]

So,

\[
\begin{align*}
x &= x_0 \cos(\omega \theta) + \frac{p_{x0}}{m\omega} \sin(\omega \theta) \\
y &= y_0 \cos(\omega \sqrt{\alpha} \theta) - \frac{p_{y0}}{m\omega \sqrt{\alpha}} \sin(\omega \sqrt{\alpha} \theta) \\
p_x &= -m\omega x_0 \sin(\omega \theta) + p_{x0} \cos(\omega \theta) \\
p_y &= m\omega \sqrt{\alpha} y_0 \sin(\omega \sqrt{\alpha} \theta) + p_{y0} \cos(\omega \sqrt{\alpha} \theta)
\end{align*}
\]

Reverting to the notation in which x_0, p_{x0}, y_0, p_{y0} denote the original coordinates and X, Y, P_x, P_y denote the canonically transformed coordinates, we get the form of the canonical transformation as

\[
\begin{align*}
X &= x \cos(\omega \theta) + \frac{P_x}{m\omega} \sin(\omega \theta) \\
P_x &= p_x \cos(\omega \theta) - m\omega x \sin(\omega \theta) \\
Y &= y \cos(\omega \sqrt{\alpha} \theta) - \frac{P_y}{m\omega \sqrt{\alpha}} \sin(\omega \sqrt{\alpha} \theta) \\
P_y &= p_y \cos(\omega \sqrt{\alpha} \theta) + m\omega \sqrt{\alpha} y \sin(\omega \sqrt{\alpha} \theta)
\end{align*}
\]
where \(\theta \) is an arbitrary parameter, such that \(\theta = 0 \) corresponds to the untransformed coordinates. This canonical transformation is composed of two rotations in the 4-dimensional phase space (one involving \(X \) and \(P_x \) and the other involving \(Y \) and \(P_y \)), and its generator is the conserved quantity \(\Delta \).

Problem 4

Part (a)

\[F_2(q, P, t) = \left(q + \frac{1}{2}gt^2 \right) \left(P - mgt \right) - \frac{P^2t}{2m} \quad (98) \]

Now,

\[p = \frac{\partial F_2}{\partial q} = P - mgt \quad (99) \]

\[Q = \frac{\partial F_2}{\partial P} = q + \frac{1}{2}gt^2 - \frac{Pt}{m} = q + \frac{1}{2}gt^2 - \frac{pt}{m} - gt^2 \quad (100) \]

So, the canonical transformation is

\[P = p + mgt \quad (101) \]

\[Q = q - \frac{pt}{m} - \frac{1}{2}gt^2 \quad (102) \]

Part (b)

\[\{Q, Q\} = \{q - \frac{pt}{m} - \frac{1}{2}gt^2, q - \frac{pt}{m} - \frac{1}{2}gt^2\} = 0 \quad (103) \]

\[\{P, P\} = \{p + mgt, p + mgt\} = 0 \quad (104) \]

\[\{Q, P\} = \{q - \frac{pt}{m} - \frac{1}{2}gt^2, p + mgt\} \]

\[= \frac{\partial Q}{\partial q} \frac{\partial P}{\partial P} - \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q} \]

\[= (1)(1) - \left(-\frac{t}{m} \right) (0) \]

\[= 1 \quad (105) \]

So, the transformation satisfies the canonical Poisson Bracket relations.

Part (c)

The Lagrangian is

\[L(q, \dot{q}) = \frac{1}{2}m\dot{q}^2 - mgq \quad (106) \]
The canonical momentum is

\[p = \frac{\partial L}{\partial \dot{q}} = m\dot{q} \]

(107)

So the Hamiltonian is

\[H = p\dot{q} - L = \frac{p^2}{2m} + mgq \]

(108)

Now, \(Q = q - \frac{pt}{m} - \frac{1}{2}gt^2 \), so

\[\{Q, H\} = \left\{ q - \frac{pt}{m} - \frac{1}{2}gt^2, \frac{p^2}{2m} + mgq \right\} \]

\[= \left\{ q, \frac{p^2}{2m} \right\} - \left\{ \frac{pt}{m}, mgq \right\} \]

\[= \frac{1}{2m}\{q, p^2\} - gt\{p, q\} \]

\[= \frac{p}{m} + gt \]

(109)

Also

\[\frac{\partial Q}{\partial t} = -\frac{p}{m} - gt \]

(110)

So,

\[\frac{dQ}{dt} = \frac{\partial Q}{\partial t} + \{Q, H\} = 0 \]

(111)

Also, \(P = p + mgt \), so

\[\{P, H\} = \{ p + mgt, \frac{p^2}{2m} + mgq \} \]

\[= mg\{p, q\} \]

\[= -mg \]

(112)

and

\[\frac{\partial P}{\partial t} = mg \]

(113)

So,

\[\frac{dP}{dt} = \frac{\partial P}{\partial t} + \{P, H\} = 0 \]

(114)
Part (d)

\[\frac{\partial F_2}{\partial t} = gt(P - mgt) + \left(q + \frac{1}{2}gt^2 \right) (-mg) - \frac{P^2}{2m} \]

\[= Pgt - \frac{3}{2}mg^2t^2 - mgq - \frac{P^2}{2m} \]

\[= (p + mgt)gt - \frac{3}{2}mg^2t^2 - mgq - \frac{(p + mgt)^2}{2m} \]

\[= -\frac{p^2}{2m} - mgq - mg^2t^2 \]

(115)

So, the Hamiltonian associated with Q, P is

\[K = H + \frac{\partial F_2}{\partial t} \]

\[= \frac{p^2}{2m} + mgq - \frac{p^2}{2m} - mgq - mg^2t^2 \]

\[= -mg^2t^2 \]

(116)

So, the Hamiltonian \(K \) is zero up to time-dependent constant term \(-mg^2t^2\), but it is not a function of \(P \) and \(Q \) (which are constant with time, since \(\{Q, H\} = \{P, H\} = 0 \) as shown above).

Part (e)

\(Q \) and \(P \) are conserved quantities, that equal the initial position and the initial momentum respectively. They are constant with time, as \(q \) and \(p \) vary:

\[q(t = 0) = Q \]
\[p(t = 0) = P \]

Part (f)

\[\frac{\partial F_2}{\partial q} = P - mgt = p \]

(117)

\[\frac{\partial F_2}{\partial t} = Pgt - \frac{mg^2t^2}{2} - mgq - \frac{P^2}{2m} \]

(118)

\[H = \frac{p^2}{2m} + mgq \]

\[= \frac{1}{2m} \left(\frac{\partial F_2}{\partial q} \right)^2 + mgq \]

(119)

So,

\[K = H + \frac{\partial F_2}{\partial t} = -mg^2t^2 \]

(as shown in part d)
implies
\[H \left(q, \frac{\partial F_2}{\partial q} \right) + \frac{\partial F_2}{\partial t} = -mg^2 t^2 \] (120)

So, the Hamilton-Jacobi equation is satisfied, except for a time-dependent constant term appearing on the right hand side.

Part (g)

\[
f(Q, P, t) = F_2(q(Q, P, t), P, t) = \left(q + \frac{1}{2} gt^2 \right) (P - mgt) - P^2 t \frac{2}{2m}
\]
\[
= \left(Q + \frac{pt}{m} + gt^2 \right) (P - mgt) - P^2 t \frac{2}{2m}
\]
\[
= \left(Q + \frac{(P - mgt)t}{m} + gt^2 \right) (P - mgt) - P^2 t \frac{2}{2m}
\]
\[
= \left(Q + \frac{Pt}{m} \right) (P - mgt) - P^2 t \frac{2}{2m}
\]
\[
= QP + \frac{P^2 t}{2m} - Qmg - gP t^2
\] (121)

So,
\[
\frac{\partial f}{\partial t} = \frac{P^2}{2m} - mgQ - 2Pgt
\] (122)

Also, \(p = m\dot{q} = P - mgt \). So,
\[
L(q, \dot{q}) = \frac{p^2}{2m} - mgq
\]
\[
= \frac{1}{2m} (P - mgt)^2 - mg \left(Q + \frac{Pt}{m} - \frac{1}{2} gt^2 \right)
\]
\[
= \frac{1}{2m} (P^2 + m^2 g^2 t^2 - 2Pmgt) - mgQ - Pgt + \frac{1}{2} mg^2 t^2
\]
\[
= \frac{P^2}{2m} - 2Pgt - mgQ + mg^2 t^2
\]
\[
= \frac{\partial f(Q, P, t)}{\partial t} + mg^2 t^2
\] (123)

So, \(L(q(Q, P, t), \dot{q}(Q, P, t)) = \frac{\partial f(Q, P, t)}{\partial t} \) up to a time-dependent term \(mg^2 t^2 \).

Problem 5

The Hamilton-Jacobi equation, as expressed in the form
\[
H(q, \nabla S(q, P)) + \frac{\partial S(q, P)}{\partial t} = 0
\] (124)
was obtained by constructing a generating function of the form

\[F = F_2(q, P, t) - Q_i P_i \]

where \(F_2 \) denotes a generic type-2 generating function. For such a choice of \(F \), the Hamiltonian \(\dot{K} = H + \frac{\partial F}{\partial t} \) is zero.

Now, consider a type-3 generating function \(F_3 \) of the old momenta and the new coordinates, such that the Hamiltonian \(K \) is zero. Therefore,

\[\dot{Q}_i = \frac{\partial K}{\partial P_i} = 0 \] \hspace{1cm} (125)

\[\dot{P}_i = -\frac{\partial K}{\partial Q_i} = 0 \] \hspace{1cm} (126)

Now,

\[q_i = -\frac{\partial F_3}{\partial p_i} = -(\nabla_p F_3)_i \] \hspace{1cm} (127)

so,

\[H(q(Q_p), p, t) + \frac{\partial F_3}{\partial t}(Q, p, t) = 0 \] \hspace{1cm} (128)

where the old coordinates \(q \) have been expressed in terms of the old momenta and the new coordinates using equation (127). This is a PDE in \((n+1)\) variables \(p_1, \ldots, p_n, t \). Let \(\tilde{S} \) denote the solution of this PDE. Then, a solution of the form,

\[F_3 \equiv \tilde{S} = \tilde{S}(p_1, \ldots, p_n; \alpha_1, \ldots, \alpha_{n+1}; t) \] \hspace{1cm} (129)

where \(Q_i = \alpha_i \) are the constants of motion (for \(i = 1, \ldots, n \)), is consistent with equation (125). Here the constant \(\alpha_{n+1} \) must be a constant of integration, so the physically meaningful solution is of the form

\[\tilde{S} = \tilde{S}(p_1, \ldots, p_n; \alpha_1, \ldots, \alpha_n; t) \] \hspace{1cm} (130)

So, in terms of \(\tilde{S} \), equation (128) can be written as

\[H(-\nabla_p \tilde{S}, p, t) + \frac{\partial \tilde{S}}{\partial t}(Q, p, t) = 0 \] \hspace{1cm} (131)

which is of the desired form.