1. Consider a Hamiltonian which explicitly depends on time. At $t=0$ the Hamiltonian is \hat{H}_0 and at $t=T$ it is \hat{H}_f. Suppose that at $t=0$ the system is in the ground state of \hat{H}_0. We have argued in that if the time variation of the Hamiltonian is very slow (adiabatic), then at $t=T$ it will be in the ground state of \hat{H}_f. In general, this does not mean, however, that there is no probability of finding the state in the ground state of \hat{H}_0. Similarly we have argued that if the time variation is very fast, then at $t=T$ the system will remain in the ground state of \hat{H}_0. Again this does not mean that that there is no probability of finding the state in the ground state of \hat{H}_f. Show that the probability that the system is in the ground state of \hat{H}_0 at $t=T$ for adiabatic time variations is exactly the same as the probability that it is in the ground state of \hat{H}_f for sudden ones.

2. A particle of mass m is in the ground state of a harmonic oscillator with natural frequency ω_0 at $t=0$. At $t=0$ a perturbation of the form $\hat{H}' = \frac{1}{2} m \omega_0^2 x^2 (1 - e^{-\tau t})$ is added on. Thus as $t \to \infty$ the system finds itself in a harmonic oscillator with a frequency of $\omega = \sqrt{2} \omega_0$.
 a. Find the state of the system at long time for the regime $\omega_0 \tau >> 1$ (you may neglect phases).
 b. Find the state of the system at long time for the regime $\omega_0 \tau << 1$ (you may neglect phases).
 c. For the regime $\omega_0 \tau >> 1$ what is the probability that the system at long times is in the ground state of the original harmonic oscillator.
 d. For the regime $\omega_0 \tau << 1$ what is the probability that the system at long times is in the ground state of the final harmonic oscillator.

3. A particle of mass m is in the ground state of an infinite spherical well of radius R. The walls of the well are slowly expanded to $2R$. How much work does the particle to on the wall during this expansion?