A. Inescapable cylinder

The goal of this problem is to find some energy eigenfunction for a particle of mass M inside a cylinder of length L and radius ρ with impenetrable walls (like the infinite square well but now in the shape of a cylinder).

i) Write the Schroedinger equation in polar coordinates and use separation of variables to split it in three separate ordinary differential equations

ii) Solve the equations for the θ and z coordinates with the appropriate boundary conditions

iii) Look up (in the literature) the general solution for the radial equation. Hint: the solution is a linear combination of $J_m(\sqrt{2ME})$ and $Y_m(\sqrt{2ME})$, where J_m and Y_m are the so-called Bessel functions of m^{th} order. How does $Y_m(x)$ behavie at small x? Is this acceptable physically?

iv) The first zeros of the $J_0(x)$ are at $x \approx 2.40483, 5.52008, 8.65373$ and 11.7915 (this information is found on tables, Mathematica, Maple, wikipedia, ...). use that information to find the first four s-wave energy eigenstates.

B. Spherical harmonics

i) Show that $Y_{lm}(\theta, \phi)$ is an eigenstate of $\hat{L}_z = -i\hbar \frac{d}{d\phi}$. What is the eigenvalue?

ii) Show that $Y_{l-1}(\theta, \phi)$ is an eigenstate of \hat{L}^2. What is the eigenvalue?

iii) Show that

$$e^{-i\varphi \hat{L}_z} \psi(r, \theta, \phi) = \psi(r, \theta, \phi + \varphi).$$

Notice how this is similar to

$$e^{-i\varphi \hat{p}} \psi(x) = \psi(x + y)$$

proved in an earlier homework.