Solutions to Homework 1

February 11, 2003

Problem 1

a: Angular frequency \(\omega = \sqrt{\frac{\kappa}{\text{mass}}} \), \(\kappa = 800 \text{N/m} \), mass = 2kg, therefore, \(\omega = 20 \text{rad/s} \).

b: Block released from rest \(A=20 \text{cm}. \) displacement \(y = 20 \cos(\omega t) \), velocity \(\nu = \frac{dy}{dt} \), Acceleration \(a = \frac{d\nu}{dt} = -\omega^2 y \). For downward positive \(y = 12 \text{cm} \), \(a = -4800 \text{cm/s}^2 \), upward negative \(y = -12 \text{cm} \), \(a = 4800 \text{cm/s}^2 \); With Energy conservation, \(E = \frac{1}{2} \kappa A^2 = \frac{1}{2} m \nu^2 + \frac{1}{2} \kappa y^2 \). we have \(\nu = \pm \omega \sqrt{A^2 - y^2} \), for \(y = \pm 12 \text{cm}, \nu = \pm 320 \text{cm/s} \)

Problem 2

a Consider what happens when the mass is given a displacement \(x > 0 \), one spring will be stretched \(x \) and the other will be compressed \(x \), they will each exert a force of magnitude \(20 \text{N/m} \times x \) on the mass in the direction opposite to the displacement. Hence the total restoring force is \(F = -20 \times x - 20 \times x = -40 \text{N/m} \times x \), \(F = -\kappa x \) tell us the system has a spring constant \(\kappa = 40 \text{N/m} \). Hence, the period \(T = 2\pi \sqrt{\frac{\text{mass}}{\kappa}} = 0.54 \text{s} \).

b: when the mass is displaced a distance \(y \) downward, each spring is stretched a distance \(y \). The net restoring force is then \(F = 2 \times (-20 \text{N/m})y \). Hence, again, from \(F = -\kappa x \), we have \(\kappa = 40 \text{N/m} \), the same as in (a). \(T = 0.54 \text{s} \).

Problem 3

Mass \(m_2 \) shoots off when the spring stretched maximally and carrying kinetic energy \(K \) away from the system, so the amplitude of oscillation of \(m_1 \) satisfies \(1/2 \kappa A^2 = 1/2 m_1 \nu^2 \), where \(\nu \) is the velocity at the equilibrium position.
To find \(\nu \), potential \(U \) of spring = maximum \(K_t \) of masses.

\[
\kappa d^2/2 = (m_1 + m_2)\nu^2, \quad \text{giving } \nu^2 = (\kappa d^2)/(m_1 + m_2).
\]

Then we have \(1/2\kappa A^2 = 1/2m_1\nu^2 = 1/2(\kappa d^2)/(m_1 + m_2) \), then \(A = d\sqrt{m_1/(m_1 + m_2)} \).

Problem 4

a: If the stick is rotated through a small angle \(\theta \), each spring is stretched a distance \(L\theta/2 \). Each spring causes a torque= \(\theta/2 \times L/2 \) with both torque in the same direction. The torque equation is

\[
-2\kappa \theta (L/2)(L/2) = I_{cm} \alpha
\]

where \(I_{cm} = mL^2/12 \), the momentum to center of mass; \(\alpha = d^2\theta/d^2t \)

then \(\alpha = -6\kappa/m)\theta \). This is the equation for harmonic motion.

b) Frequency \(f = \sqrt{6\kappa/m}/2\Pi \).

c) The velocity reach the maxium when the stick passes the horizontal. Let \(\theta_0 \) be the initial angle, so the maximum velocity = \((L/2)(2\Pi f)\theta_0 = L\theta_0(1.5\kappa/m)^{1/2} \).

Problem H1

Equation of motion is \(\tau = I\alpha \), where \(\tau \) is the external torque, \(I \) is the momentum of inertia, \(\alpha \) is the angular acceleration, and \(\tau \) and \(I \) are about to the pivot point.

The contribution to \(\tau \) is due to the rod and disk

\[
\tau = -mg(L/2)\sin\theta - Mg(R + L)\sin\theta
\]

where \(\theta \) is a small angular displacement from the vertical.

\[
I = I_{rod} + I_{disk} = (mL^2)/3 + [(MR^2)/2 + M(R + L)^2]
\]

where we used the parallel axis law to calculate \(I_{disk} \).

For small \(\theta \), \(\sin\theta \approx \theta \), so the equation of the motion is

\[
-g[M R + M L + (m L)/2] \theta = [mL^2/3 + 3MR^2/2 + 2MRL + ML^2] \alpha
\]

so easily to get the period \(f = 1/T, (2\Pi f)^2 \) is the coefficient of the \(\theta \) term.

\[
T^2 = [4\Pi^2/g][mL^2/3 + (3MR^2)/2 + 2MRL + ML^2]/[ML + MR + (mL)/2]
\]