Problem 3 [10 points]
In figure 3, a string, tied to a vibrator at \(P \) and running over a support at \(Q \), is stretched by a block of mass \(m \). The separation \(L \) between \(P \) and \(Q \) is 1.2 m, the linear density of the string is 1.6 g/m, and the frequency \(f \) of the vibrator is fixed at 120 Hz. The amplitude of the motion at \(P \) is small enough for that point to be considered a node. A node also exists at \(Q \).
(a) What mass \(m \) allows the vibrator to set up the fourth harmonic on the string?
(b) What standing wave mode is set up if \(m = 1.00 \) kg.

Problem 4
(a) Sketch the profile of the wave \(y(x, t) = A e^{-B(x-ut)^2} \) at \(t = 0s \) and \(t = 1s \), using \(A = 1.0 \) m, \(B = 1.0 \) m\(^{-2} \) and \(v = 2.0 \) m/s.
(b) Verify by partial differentiation, that the wave function of part (a) satisfies the one-dimensional wave equation.