1. [10 pts] Show that the displacement current inside a parallel-plate capacitor can be written as:

\[C \frac{dV_c}{dt} \]

where \(C \) is the capacitance and \(V_c \) is the voltage across the capacitor.

Solution:

We can use one of the Maxwell's equations:

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_s + \mu_0 \varepsilon_0 \frac{\partial \Phi_{E,S}}{\partial t} \]

and rewrite it as

\[\oint B \cdot d\mathbf{l} = \mu_0 I_s + \mu_0 I_{Disp} \]

We might say that the magnetic field \(B \) at some point outside the capacitor originates due to the effect of a real current \(I_s \) and a displacement current \(I_{Disp} \).

Then we have

\[I_{Disp} = \varepsilon_0 \frac{\partial \Phi_{E,S}}{\partial t} = \varepsilon_0 \frac{\partial (\mathbf{E} \cdot \mathbf{A})}{\partial t} = \varepsilon_0 \frac{\partial V_c}{\partial t} = \frac{\varepsilon_0 A}{D} \frac{\partial V_c}{\partial t} = C \frac{\partial V_c}{\partial t} \]

Where we have used the formula for capacitance of a parallel plate capacitor of plate separation \(D \) and plate area \(A \) (which is constant over time),

\[C = \frac{\varepsilon_0 A}{D} \]

And the relationship between electrostatic field and electrostatic potential,

\[E_x = -\frac{\partial V_c}{\partial x} = -\frac{V_c}{D} \]

where \(x \) is the direction normal to the plates and the potential gradient is uniform between the plates and we have neglected the negative sign since we are dealing with magnitudes only.