Conceprual Questions

5. Higher energy e's correspond to lower wavelenth. According to Bragg formula \(\cos \theta_m = \frac{m}{2d} \) will correspondingly be smaller for a given d and hence \(\theta_m \) will be larger for each m in diffraction plate and hence better resolved.

6. \(E_0 = \frac{1}{8}mL^2 \propto \frac{1}{m^2} \). As because we are increasing the mean \(\theta \) limited and decreasing this length by a factor of half they can be same and ground state energy remains the same.
Exercises and Problems

7. Angle for m^{th} order line is given by

$$\text{Path difference} = 2d \cos \theta_m = m \lambda$$

(Bragg condition). As we go to higher and higher orders, cosine of θ also increases (i.e. value of θ goes on decreasing). However you can't decrease it beyond zero (see left) whence you can't make the path difference more than $2d$. Hence the path difference lies between $0 (\theta=90^\circ)$ to $2d (\theta=0^\circ)$.

For intermediate angle the path difference is in between these two values. But you get the lines when

path difference is an integer multiple of λ, i.e. 2λ...

Clearly we can go up to $\pm 2d/\lambda$ order [and of course

the order has to be an integer]. So it's highest integer $\leq 2d/\lambda$.
(Aside remark) From problem 7 you can really see the highest order observable \(\leq 2/d \times 2d/(hc/E) \approx 3.17 \), i.e. \(m_{\text{MAX}} = 3 \).

\[\lambda_e = \frac{h}{p_e} = \frac{h}{mc} = 3.6 \times 10^{-10} \text{m} \]

\[d = 1.5 \text{mm} \gg \lambda_e \]

Hence we can apply the small angle approx. for fringe width:

\[i.e. \quad \alpha \approx \frac{\lambda}{L/d} \]

\[\lambda \propto \frac{1}{m} \implies \lambda_e / \lambda_e = me/m_n \quad \text{or} \quad \lambda_n = \frac{me}{m_n} \cdot \lambda_e < \lambda_e. \]

Hence, no problem with the earlier assumption even in time.

 Clarification (b): We want some width of fringes as of the electron.

\[\text{Detector} \]

Geometry of the set up of Davisson Germer exp.

Bragg condn: \(2d \sin \Theta_m = m \lambda \)

or, (in terms of \(\phi, D \)): \(2D \cos \phi/2 \cdot \sin \phi/2 = m \lambda \)

or, \(D \sin \phi = m \lambda \)

or, \(D = D \cos \phi \)

\[\Rightarrow \phi = 2\theta \]

\[\phi = \theta/2 \]

Sample

Atomic spacing \(d \) = distance between planes
So Davison-Germer exp. is nothing but Bragg diffraction with different variables. Here $\phi = 60^\circ$ (scattering angle).