1. A bullet of mass m traveling horizontally with initial speed v_i embeds into a block of mass M which is initially at rest on a table. The block is attached to a string of radius r. After the collision, the bullet-block combination rotates one complete revolution before coming to rest as a result of friction between the block and the table. Where appropriate, express your answers in terms of $m, M, v_i, r,$ and g.

(a) [2pts] Name the type of collision.

(b) [5pts] Find the linear speed of the bullet-block just after the collision. What is the angular speed ω?

(c) [5pts] What is the coefficient of kinetic friction μ_k between the block and the table?

(d) [3pts] Calculate the angular acceleration of the bullet-block combination.